Sampling, Aliasing, & Mipmaps
Examples of Aliasing

Original Image Samples Reconstruction

MIT EECS 6.837
Examples of Aliasing

Jagged boundaries
Examples of Aliasing

Improperly rendered detail
Examples of Aliasing

Texture Errors
In photos too
Philosophical perspective

- The physical world is continuous, inside the computer things need to be discrete
- Lots of computer graphics is about translating continuous problems into discrete solutions
 - e.g. ODEs for physically-based animation, global illumination, meshes to represent smooth surfaces, rasterization, antialiasing
- Careful mathematical understanding helps do the right thing
What is a Pixel?

• A pixel is not:
 – a box
 – a disk
 – a teeny tiny little light

• A pixel “looks different” on different display devices

• A pixel is a sample
 – it has no dimension
 – it occupies no area
 – it cannot be seen
 – it has a coordinate
 – it has a value
More on Samples

• In signal processing, the process of mapping a continuous function to a discrete one is called *sampling*.

• The process of mapping a continuous variable to a discrete one is called *quantization*.
 – Gamma helps quantization.

• To represent or render an image using a computer, we must both sample and quantize.
 – Today we focus on the effects of sampling and how to fight them.

Thursday, November 18, 2010
Sampling & reconstruction

The visual array of light is a continuous function

1/ we sample it
 – with a digital camera, or with our ray tracer
 – This gives us a finite set of numbers, not really something we can see
 – We are now inside the discrete computer world

2/ we need to get this back to the physical world:
 we reconstruct a continuous function
 – for example, the point spread of a pixel on a CRT or LCD

• Both steps can create problems
 – pre-aliasing caused by sampling
 – post-aliasing caused by reconstruction
 – We focus on the former
Questions?
Sampling Density

- If we’re lucky, sampling density is enough
Sampling Density

- If we insufficiently sample the signal, it may be mistaken for something simpler during reconstruction (that's aliasing!)
- This is why it’s called aliasing: the new low-frequency sine wave is an alias/ghost of the high-frequency one
Discussion

• Types of aliasing
 – Edges
 • mostly directional aliasing (vertical and horizontal edges rather than actual slope)
 – Repetitive textures
 • Paradigm of aliasing
 • Harder to solve right
 • Motivates fun mathematics
Solution?

• How do we avoid that high-frequency patterns mess up our image?

• We blur!
 – In the case of audio, people first include an analog low-pass filter before sampling
 – For ray tracing/rasterization: compute at higher resolution, blur, resample at lower resolution
 – For textures, we can also blur the texture image before doing the lookup

• To understand what really happens, we need serious math
Types of blur

• Blur = local weighted average
• Different set of weights (kernel) => different blur
 – e.g.: box, Gaussian, bilinear, bicubic
• Yields slightly different quality’
• Will discuss later
Questions?
Supersampling in graphics

- Pre-filtering (blurring before sampling) is hard
 - Requires analytical visibility
 - Then difficult to integrate analytically with filter
- Possible for lines, or if visibility is ignored
- Usually, fall back to supersampling
In practice: Supersampling

- Your intuitive solution is to compute multiple color values per pixel and average them.

jaggies w/ antialiasing
Uniform supersampling

- Compute image at resolution $k \times \text{width}$, $k \times \text{height}$
- Downsample using low-pass filter (e.g. Gaussian, sinc, bicubic)
Different kinds of blur (/average)

From the PBRT book

Figure 7.37: The pixel reconstruction filter used to convert the image samples into pixel values can have a noticeable effect on the character of the final image. Here we see blowups of a region of the brick wall in the Sponza atrium scene, filtered with (a) the box filter, (b) Gaussian, and (c) Mitchell-Netravali filter. Note that the Mitchell filter gives the sharpest image, while the Gaussian blurs it. The box is the least desirable, since it allows high-frequency aliasing to leak into the final image. (Note artifacts on the top edges of arches, for example.)
In practice: Supersampling

• Your intuitive solution is to compute multiple color values per pixel and average them

• A better interpretation of the same idea is that
 – You first create a higher resolution image
 – You blur it (low pass, prefilter)
 – You resample it at a lower resolution
Uniform supersampling

• Advantage:
 – The first (super)sampling captures more high frequencies that are not aliased
 – Downsampling can use a good filter

• Issues
 – Frequencies above the (super)sampling limit are still aliased

• Works well for edges, since spectrum replication is less an issue
• Not as well for repetitive textures
 – But solution soon

MIT EECS 6.837

Thursday, November 18, 2010
Questions?
Uniform supersampling

- Problem: supersampling only pushes the problem further: The signal is still not bandlimited
- Aliasing happens
Jittering

- Uniform sample + random perturbation
- Sampling is now non-uniform
- Signal processing gets more complex
- In practice, adds noise to image
- But noise is better than aliasing Moiré patterns
Figure 11
Jittered sampling of a slowly moving texture with jitter of 0, .5, and 1 from left to right and oversampling rates of 1 and 2 from top to bottom.
Jittering

- Displaced by a vector a fraction of the size of the subpixel distance
- Low-frequency Moire (aliasing) pattern replaced by noise
- Extremely effective
- Patented by Pixar!
- When jittering amount is 1, equivalent to stratified sampling (cf. later)
Questions?
Sampling Texture Maps

- How to map the texture area seen through the pixel window to a single pixel value?
Sampling Texture Maps

- When texture mapping it is rare that the screen-space sampling density matches the sampling density of the texture.

Original Texture

64x64 pixels

Magnification for Display

Minification for Display

MIT EECS 6.837
Linear Interpolation

• Tell OpenGL to use a tent filter instead of a box filter.
• Magnification looks better, but blurry
 – (texture is under-sampled for this resolution)
 – Oh well.
Questions?
Minification: Examples of Aliasing
Solution

• 1/ we can supersample the final image
 – But only offsets the Nyquist limit

• 2/ we can “blur” the texture (prefilter)
 – The right way to go

But how much blur?
Spatial Filtering

- Remove the high frequencies which cause artifacts in texture minification.
- Compute a spatial integration over the extent of the pixel.
- This is equivalent to convolving the texture with a filter kernel centered at the sample (i.e., pixel center)!
- Expensive to do during rasterization, but an approximation it can be precomputed.
MIP Mapping

- Construct a pyramid of images that are pre-filtered and re-sampled at $1/2$, $1/4$, $1/8$, etc., of the original image's sampling.
- During rasterization we compute the index of the decimated image that is sampled at a rate closest to the density of our desired sampling rate.
- MIP stands for *multum in parvo* which means *many in a small place*.
MIP Mapping Example

Nearest Neighbor

MIP Mapped (Bi-Linear)
MIP Mapping Example

- Small details may "pop" in and out of view

Nearest Neighbor

MIP Mapped (Bi-Linear)
Examples of Aliasing

Texture Errors

nearest neighbor/point sampling

mipmaps & linear interpolation

MIT EECS 6.837
Finding the mip level

- Square MIP-map area is a bad approximation
Finding the MIP level

How does a screen-space change dt relates to a texture-space change du, dv.

$=>$ derivatives, $(du/dt, dv/dt)$.

e.g. computed by hardware during rasterization

often: finite difference (pixels are handled by quads)
Actually, you have a choice of ways to translate this derivative value into a MIP level.

Because we have two derivatives, for u and for v (anisotropy)

This also brings up one of the shortcomings of MIP mapping. MIP mapping assumes that both the u and v components of the texture index are undergoing a uniform scaling, while in fact the terms du/dt and dv/dt are relatively independent. Thus, we must make some sort of compromise. Two of the most common approaches are given below:

\[
\text{level} = \log_2 \left(\sqrt{ \left(\frac{du}{dt} \right)^2 + \left(\frac{dv}{dt} \right)^2 } \right)
\]

\[
\text{level} = \log_2 \left(\max \left(\left| \frac{du}{dt} \right|, \left| \frac{dv}{dt} \right| \right) \right)
\]
Anisotropy & MIP-Mapping

• What happens when the surface is tilted?

Nearest Neighbor MIP Mapped (Bi-Linear)

MIT EECS 6.837
Questions?
Elliptical weighted average

- Isotropic filter wrt screen space
- Becomes anisotropic in texture space
- e.g. use anisotropic Gaussian
- Called Elliptical Weighted Average (EWA)

Figure 3: A perspective projection of a Gaussian filter into texture space

Figure 4: An affine projection of a Gaussian filter into texture space.
Image Quality Comparison

- Trilinear mipmapping

EWA trilinear mipmapping

MIT EECS 6.837
Approximation of anisotropic

- Feline: Fast Elliptical Lines for Anisotropic Texture Mapping Joel McCormack, Ronald Perry, Keith I. Farkas, and Norman P. Jouppi SIGGRAPH 1999

- Approximate Anisotropic Gaussian by a set of isotropic “probes”

MIT EECS 6.837
Figure 10: Trilinear paints curved lines with blurring.

Figure 13: “High-quality” Simple Feline paints curved lines with few artifacts.

Figure 14: Mip-mapped EWA paints curved lines with few artifacts.
Signal processing 101

- Sampling and filtering are best understood in terms of Fourier analysis
- We already saw that sine waves generate aliasing: a high frequency sine wave turns into a low frequency one when undersampled
Blurring: convolution

Input

Kernel

Convolution sign

Output

Thursday, November 18, 2010
Blurring: convolution

Same shape, just reduced contrast!!!

This is an eigenvector
(output is the input multiplied by a constant)
Motivation for Fourier analysis

- Sampling/reconstruction is a linear process
- The sampling grid is a periodic structure
 - Fourier is pretty good at handling periodic stuff
- Plus we saw that a sine wave has serious problems with sampling
- The solution is about blurring
 - We have seen that sine wave are simple wrt blur
- In general, the Fourier transform is just a change of basis
 - In that basis, aliasing & blurring are easier to understand
 - become diagonal (we can consider frequencies individually)
Questions?