Sublinear time algorithms based on simulating greedy algorithms

Lecture 14
Ronitt Rubinfeld
Sparse Graphs

- **Representation:**
 - Max degree d
 - Adjacency list format

- **Problems of interest:**
 - Vertex cover
 - Matching
 - Dominating set
 - Set cover (on sparse set systems)
Maximal Matching

• \(M \subseteq E \) is a matching if \(\forall (u,v), (w,x) \in M \),
 \(\{u,v\} \cap \{w,x\} = \emptyset \).

• \(M \) is a maximal matching if adding any edge violates the matching property.

• Note:
 – Size of any vertex cover \(\geq \) size of any maximal matching.
Greedy algorithm for maximal matching

• Algorithm:
 – \(M \leftarrow \emptyset \)
 – \(\forall e=(u,v) \in E \)
 – If neither of \(u,v \) matched
 – Add \(e \) to \(M \)
 – Output \(M \)

• Why is \(M \) maximal?
 – If \(e \) not in \(M \) then either \(u \) or \(v \) already matched

• How big is \(M \) for graphs with max degree \(d \)?
 – Any edge in \(M \) removes \(< 2d \) others from consideration
 – Still have possible edges to add for \(\geq n/2d \) rounds
Idea for sublinear time algorithm:

- Run [Parnas-Ron] reduction algorithm:
 - i.e.,
 - Sample $O(1/\epsilon^2)$ nodes
 - For each sampled node, call “oracle” on neighboring edges to decide if it is in the matching
 - Output
 $\left(\frac{\text{fraction of sampled nodes in matching}}{2}\right) \cdot n + (\epsilon/2)n$

- How do you implement oracle?
 - Idea: figure out what greedy would do
Problems with greedy

• Can have long dependency chains!
 – (see board for example)

• How can you implement the oracle?
 – Must know if adjacent edges that come before e in the ordering are in the matching
 – Do not need to know anything about edges coming after
Breaking long dependency chains

• Assign \textit{random} ordering to edges
 – Greedy works under any ordering
 – To show: random order has short dependency chains
Implementing oracle \mathcal{O}

[Nguyen Onak]

- **Preprocessing:**
 - assign random number $r_e \in [0,1]$ to each $e \in E$

- **Oracle implementation:**
 - Input: edge $e \in E$,
 - Output: is e in M?
 - Algorithm:
 - Find all the adjacent edges of e, $e' \in E$, such that $r_{e'} < r_q$
 - Recursively check if any in M
 - If any in the matching, output NO
 - If none are in the matching, output YES
Example Run \emptyset (cont.)
Example Run \emptyset (cont.)
Example Run Θ (cont.)
Example Run \emptyset (cont.)
Example Run \emptyset (cont.)
Example Run \varnothing (cont.)
Example Run \emptyset (cont.)
Example Run \emptyset (cont.)
Example Run \emptyset (cont.)
Example Run θ (cont.)
Example Run θ (cont.)
Example Run \emptyset (cont.)
Correctness

• This algorithm simulates run of classical greedy algorithm
 – Greedy works under any ordering of edges

• Outputs estimate t such that

\[\text{MM}(G) \leq t \leq \text{MM}(G) + \epsilon n \]

where $\text{MM}(G)$ is size of some maximal matching
Complexity: Heuristic, nonoptimal argument

Consider ranks along chain of recursive calls:

- \(r_e' \) uniformly distributed
- \(\Pr[r_e' \text{ less than median of ranks } < r_e \mid r_e', < r_e] \) is roughly \(\frac{1}{2} \)
 - So ranks go down by factor of roughly 2 at each recursion
- When rank \(< 1/2d \) unlikely that any neighbor ranked smaller
- \(O(\log d) \) levels of recursion suffice
Complexity

• Claim: Expected number queries to graph per oracle query is $2^{O(d)}$

 – Total complexity is $2^{O(d)}/\varepsilon^2$

– Main idea:

 • Bound probability a path of length k explored:
 – Ranks must decrease along the path
 – So probability $\leq 1/(k)!$
Complexity

• Claim: Expected number of queries to graph per oracle query is $2^{O(d)}$

• Proof:
 – $\Pr[\text{given path of length } k \text{ explored}] \leq 1/(k)!$
 – Number of neighbors at distance $k \leq d^k$
 – $E[\text{Number of nbrs explored at dist } k] \leq d^k/(k)!$
 – $E[\text{number of explored nodes}] \leq \sum_{k=0}^{\infty} d^k/(k)! \leq e^d/d$
 – $E[\text{query complexity}] = O(d) \cdot e^d/d$
 \[= 2^{O(d)}\]
Further work

• Always recurse on least ranked edge first gives better runtime [Yoshida Yamamoto Ito]
• More complicated argument for Maximum matching, set cover,…
• Even better results for certain classes of graphs [Hassidim Kelner Nguyen Onak]
 – Minor-free (e.g., planar)