Space-optimal L_k norm estimation

Piotr Indyk

MIT
Lₖ norm

- A stream is a sequence of updates \((i, a), i=1...m\)
 \[x_i = x_i + a\]
 (a integer)
- Want to estimate \(||x||_k\)
- Today, we will see an algorithm:
 - Space \(O(m^{1-2/k} \text{ polylog})\), polylog=(log m + log M)^{O(1)}
 - Approximation: \(O(\log M \log m)\)
 (can be improved to \(c=1±\varepsilon\))
 - Two passes
 (can be easily reduced to one)
 - For the purpose of \(O()\) notation we assume \(k\) is constant
Tool: heavy hitters

• Define

\[HH_p^\varphi (x) = \{ i: |x_i|^p \geq \varphi \|x\|_p^p \} \]

• \(L_p \) Heavy Hitter Problem:
 – Parameters: \(\varphi \) and \(\varphi' \) (today: \(\varphi' = \varphi/2 \))
 – Goal: return a set \(S \) of coordinates s.t.
 • \(S \) contains \(HH_p^\varphi (x) \)
 • \(S \) is included in \(HH_p^{\varphi'} (x) \)

• If we have two passes, then
 – \(S=HH_p^\varphi (x) \)
 – We know the value of \(x_i \) for each \(i \in S \)

• Algorithms:
 – \(L1 \) heavy hitters using space \(O(1/\varphi \text{ polylog}) \)
 – \(L2 \) heavy hitters using same space [Charikar-Chen-Farach-Colton’02]
Point Queries/Heavy Hitters

• L1 point queries:
 – \(w = O(1/\varphi) \)
 – Prepare a random hash function \(h: \{1..m\} \rightarrow \{1..w\} \)
 – Maintain an array \(Z = [Z_1, \ldots, Z_w] \) such that \(Z_j = \sum_{i: h(i)=j} x_i \)
 – To estimate \(x_i \) return \(x^*_i = Z_{h(i)} \)
 – Amplify probability of success using median of several estimators

• L2 point queries:
 – As before, but \(Z_j = (1 \pm \alpha) \sum_{i: h(i)=j} x_i^2 \)
 and use \(x^*_i^2 = Z_{h(i)} \) to estimate \(x_i^2 \)
 – Each \(Z_j \) can be maintained using L2 sketches
Main ideas (*)

• Bucketing:
 - Define $B_j=\{i: |x_i| \in [2^j, 2^{j+1})\}$, $b_j=|B_i|$, $j=0…\log M -1$
 - We have $\sum_j 2^k b_j \leq ||x||_k \leq \sum_j 2^{k(j+1)} b_j$
 - Unfortunately, cannot estimate b_j’s in general
 • Take the largest j such that $b_j>0$
 • Then 2^j is a 2-approximation of $||x||_\infty$

• “Important” buckets:
 - $J=\{j: 2^k b_j \geq 1/(2^{k+1} \log M) ||x||_k \}$
 - Any term $2^k b_j$ provides an $O(\log M)$-approximation to $||x||_k$
 - There exists at least one important bucket

• Turns out we can estimate b_j for $j \in J$
(although our algorithm does not do that explicitly)
Algorithm overview

• “Algorithm”:
 – For $t=1\ldots\log m$
 • Choose $S(t) \subseteq \{1\ldots m\}$ be a random set such that $\Pr[i \in S(t)] = 2^{-t}$ (independently for each i)
 • Find val_t whose value is “likely” to be “close to” $\max_{i \in S(t)} |x_i|
 • Define $Z_t = 2^t \text{val}_t^k$
 – Estimator: $Z = \sum_t Z_t$

• Intuition:
 – If $x_{S(t)}$ has an entry of magnitude val_t, then it is likely that the whole vector x contains at least 2^t entries of magnitude val_t or higher
 – This contributes $Z_t = 2^t \text{val}_t^k$ to $\|x\|_k^k$
 – We take care of all ranges of bucket sizes by trying out $t=1\ldots\log m$
Dealing with important buckets

- Assume
 - \(2^{k_j} b_j \geq 1/(2^{k+1} \log M) \|x\|_k^k \rightarrow 2^{k_j} \geq 1/(2^{k+1} \log M) \|x\|_k^k / b_j\)
 - \(2^t \leq b_j \leq 2^{t+1}\)

- Projection: let \(S(t) \subseteq \{1\ldots m\}\) be a random set such that \(\Pr[i \in S(t)] = 2^{-t}\) (independently for each \(i\))

- Claim: with constant probability \(p > 1 - 1/e - 1/2\), both of the following events hold:
 - There exists \(i \in B_j \cap S(t)\)
 - We have \(\|x_{S(t)}\|_k^k \leq 2 \|x\|_k^k / 2^t\)

- In that case
 \[|x_i|_k^k \geq 2^{k_j} \geq 1/(2^{k+1} \log M) \|x\|_k^k / 2^{t+1} \geq 1/(2^{k+3} \log M) \|x_{S(t)}\|_k^k = d \|x_{S(t)}\|_k^k\] (\(d = 1/(2^{k+3} \log M)\))

- \(x_i\) is an \(L_k\) heavy hitter in \(x_{S(t)}\)
Claim proof

• There exists \(i \in B_j \cap S(t) \) with prob. \(>1-1/e \)
 – The probability that \(B_j \cap S(t) \) is empty is at most \((1-2^{-t})^{bj} < 1/e \)

• We have \(||x_{S(t)}||_k \leq 2 ||x||_k / 2^t \), with prob. \(\geq 1/2 \)
 – We have \(E[||x_{S(t)}||_k] = ||x||_k / 2^t \)
 – Markov inequality
Finding L_k HH via L2 HH

- We have $|x_i|^k \geq d \|x_{S(t)}\|_k^k$, $i \in S(t)$
- Then

 $|x_i|^2 \geq d^{2/k} \|x_{S(t)}\|_k^2$

 $\geq d \left[\|x_{S(t)}\|_2 / m^{1/2 - 1/k}\right]^2$

 $= d / m^{1 - 2/k} \|x_{S(t)}\|_2^2$

- Therefore, we can find i and x_i using $m^{1 - 2/k}$ polylog space L2 heavy hitter algorithm
Algorithm

• Sketching:
 – For $t=1\ldots \log m$, in parallel
 • Choose the random set $S(t)$
 • Prepare the L2 heavy hitter algorithm that finds the set
 $$I(t) = \{i: |x_i| \geq d/m^{1-2/k} \|x_{S(t)}\|_2^2\}$$
 as well as the values $x_i, i \in I(t)$

• Estimation:
 – For $t=1\ldots \log m$
 • Set $val_t = \max_{i \in I(t)} |x_i|$ (or 0 if $I(t)$ empty)
 • $Z_t = 2^t val_t^k$
 – Estimator: $Z = \sum_t Z_t$
Analysis: Lower Bound

• Lemma 1: For any important B_j, $2^{t} \leq b_j \leq 2^{t+1}$, we have $Z_t \geq \|x\|_k^k / O(\log M)$ with constant probability

• Proof:
 – With probability p, we find some $i \in B_j$
 – Then $\text{val}_t \geq |x_i| \geq 1/(2^{k+1}\log M) \|x\|_k^k / b_j$ and $Z_t = 2^t \text{val}_t = \|x\|_k^k / O(\log M)$

• Therefore, we have $Z \geq \|x\|_k^k / O(\log M)$ with constant probability
Analysis: Upper Bound

• Lemma 2: For each t, we have $E[Z_t] \leq \|x\|_k^k$

• Proof:

 $- Z_t \leq 2^t \|x_{S(t)}\|_\infty^k$

 $- E[2^t \|x_{S(t)}\|_\infty^k] \leq 2^t \sum_i |x|_i^k (1-1/2^t)^i^{-1}1/2^t \leq \|x\|_k^k$

• Therefore, we have $E[Z] \leq \log m \|x\|_k^k$
Discussion

• How can this be improved?
• Lower bound: can shave off the log M factor by analyzing all important buckets, not just one
• Upper bound: more tricky. Consider $x=(1,0,\ldots,0)$

For each Z_t we have:
– $E[Z_t]=1$ (with probability $1/2^t$ we have $Z_i=2^t$), which means $E[Z]=\log m$
– $Pr[Z_t>0] = 1/2^t$, which means Z is constant with arbitrarily high (constant) probability
– A logarithmic gap

• The gap can be avoided by using a more careful (but also more messy) estimator
State of the art

- \((1/\varepsilon + \log (nm))^{O(1)} n^{1-2/k}\) [Indyk-Woodruff’05]
- \(1/\varepsilon^{2+4/k} \log^2 n \log(nm) n^{1−2/k}\) [Bhuvanagiri, Ganguly, Kesh and Saha’06]
- \(1/\varepsilon^{2+6/k} \log n \log(nm) n^{1−2/k}\) [Andoni-Krauthgamer-Onak, July’10]
- \(1/\varepsilon^{2+4/k} g(n) \log (m) \log(nm) n^{1-2/k}\) [Braverman-Ostrovsky, November’10]