Insertions-only streams

Piotr Indyk
MIT
The “great streaming divide”

- Insertions and deletions
 - Linear mappings
 - Randomized algorithms (typically)
 - Covered so far
- Insertions-only
 - Divide and conquer, etc.
 - Deterministic algorithms (typically)
 - Will cover in the next few lectures
Today

• L1 heavy hitters’ using $O(1/\varphi)$ words of space
 – Compare to $O(1/\varphi \log m)$ if deletions allowed
• $O_\alpha(1)$-Approximate Metric k-median using $O(kn^\alpha)$ space, for any $\alpha > 0$

n is the length of the stream
Heavy Hitters

• Define (today)
 \[HH_\phi (x) = \{ i: |x_i| > \phi \ |x|_1 = \phi n \} \]

• Heavy Hitters’ Problem:
 – Parameter: \(\phi \)
 – Goal: return a set \(S \) of coordinates s.t.
 • \(S \) contains \(HH_\phi (x) \)
 • \(S \) has size \(O(1/\phi) \)

• The basic idea by [Misra-Gries’82]
 – Presentation from [Demaine-Munro-OrtizLopez’02]
Warmup: $\phi = \frac{1}{2}$

• If there exists a “majority” element, we want to find it

• One-counter algorithm:
 – Set $c=0$
 – For each stream element a
 • If $c=0$ then $e=a$
 • If $e=a$ then $c=c+1$ else $c=c-1$
 – Report e
Correctness

• Assume majority element (MAJ) exists
• Algorithm recap:
 – Set $c=0$
 – For each stream element a
 • (invariant)
 • If $c=0$ then $e=a$
 • If $e = a$ then $c=c+1$ else $c=c-1$
 – Report e
• Invariant: if $c=0$ then MAJ is the majority element in the remainder of the stream (including a)
 – Between the times when $c=0$, the stream contains exactly 50% of e’s
General $\varphi = 1/(L+1)$

- **Algorithm:**
 - Set $S = \emptyset$; $c: S \rightarrow \{1 \ldots n\}$
 - For each stream element a
 - If $a \notin S$ and $|S| < L$ then add a to S and set $c(a) = 0$
 - If $a \in S$ then $c(a) = c(a) + 1$ else $c(a') = c(a') - 1$ for all $a' \in S$
 - For all $a' \in S$, if $c(a') = 0$ then remove a' from S
 - Report S

- **Main proof idea:** each time we decrement all counters in S (the “decrement event”) can be charged to $L+1$ unique stream elements
Correctness

• **Iteration:**
 – If \(a \not \in S \) and \(|S| < L \) then add \(a \) to \(S \) and set \(c(a) = 0 \)
 – If \(a \in S \) then \(c(a) = c(a) + 1 \) else \(c(a') = c(a') - 1 \) for all \(a' \in S \)
 – For all \(a' \in S \), if \(c(a') = 0 \) then remove \(a' \) from \(S \)

• **Proof:**
 – Consider any element \(a \) which occurs \(> \frac{n}{L+1} \) times
 – Denote:
 • \(t_f \) = number of decrement events while reading \(a \not \in S \)
 • \(t_d \) = number of decrement events while \(a \in S \)
 • \(t_i \) = number of increments while reading \(a \in S \)
 • \(t = t_f + t_i \) = total number of occurrences of \(a \)
 – By the previous slide observation, we have \((L+1)(t_f + t_d) \leq n \)
 – If the final count of \(a \) is zero, then \(t_d = t_i \), and therefore
 \[\frac{n}{L+1} < t = t_f + t_i = t_f + t_d \leq \frac{n}{L+1} \]
 which is a contradiction
Stronger guarantees

• One can show that
 \[|c(a)-x_a| \leq n/(L+1) \]

• In fact, even
 \[|c(a)-x_a| \leq \text{Err}_1^k(x) \]
Metric k-median

- Oracle access to a metric function $D(.,.)$
- Stream: a sequence of metric points p defining a set S, $|S|=n$
- Definitions:
 - $T(p) = \min_{t \in T} D(p, t)$
 - For $|C|=k$, $\text{cost}(S, C) = \sum_{p \in S} C(p)$
 - $\text{cost}(S, Q) = \min_{C \subseteq Q, |C|=k} \text{cost}(S, C)$
- Goal: approximate $\text{cost}(S, S)$ and report the medians
k-median algorithm

- We show an $O(1)$-approximate algorithm using space $O((nk)^{1/2})$
 - Recursive application gives $O(n^{\alpha}k)$, any $\alpha>0$
- Algorithm from [Guha-Mishra-Motwani-O’Callaghan’00]
- We will need an off-line b-approximate algorithm that uses linear space
 - [Arya-Garg-Khandekar-Meyerson-Munagala-Pandit’01] does the job, with $b=3+\varepsilon$
Algorithm

• Partition the stream into blocks $S_1 \ldots S_L$, $L=\frac{n}{(n/k)^{1/2}}$, each of size $\frac{n}{L} = \frac{n}{(nk)^{1/2}}$

• For each S_i
 - Find medians $\{c_1^i \ldots c_k^i\}$ which b-approximate $\text{cost}(S_i, S_i)$
 - Compute $w_{ij}^i = \text{number of points in } S_i \text{ assigned to } c_j^i$

• Find b-approximate k medians C' for the weighted set $W=\{w_{11}^1 c_1^1 \ldots w_{Lk}^L c_k^L\}$
 - wc means points c “copied” w times

“Medians of weighted medians are medians”
Approximation

- Notation:
 - cost=$\text{cost}(S,S)$
 - C = the optimum set of medians, i.e., $\text{cost}(S,C)=\text{cost}(S,S)$
- Fact 1: $\text{cost}(S,S) \leq 2\text{cost}(S,Q)$
 - Can replace each median by the closest point in S
- Fact 2: $\sum_i \text{cost}(S_i, S_i) \leq 2\text{cost}(S,C)$
- Proof:
 - From Fact 1, we have $\text{cost}(S_i, S_i) \leq 2\text{cost}(S_i, S)$
 - Therefore
 $\sum_i \text{cost}(S_i, S_i) \leq 2 \sum_i \text{cost}(S_i, S) \leq 2 \sum_i \text{cost}(S_i, C)=2\text{cost}(S,C)$
- Therefore, the algorithm will find $(nk)^{1/2}$ weighted medians W with cost at most $2b\text{cost}$
- Now we just have to connect W to just k medians with cost $O(\text{cost})$
- We will connect them to C
Approximation, ctd.

- Fact 3: \(\text{cost}(W,C) \leq 2b\text{cost} + \text{cost} \)

- Proof:
 - Notation:
 - \(q \in W \) is a single point (possibly out of many duplicates)
 - \(p \in S \) that is assigned to \(q \)
 - \(c \in C \) is a median to whom \(p \) is assigned to
 - We can connect each \(q \) to \(c \) through \(p \)
 - Total cost:
 - \(q \) to \(p \): \(2b\text{cost} \)
 - \(p \) to \(c \): \(\text{cost} \)
 - Therefore, \(\text{cost}(W,C) \leq 2b\text{cost} + \text{cost} \)
Approximation, ctd.

• Altogether:
 – \(\text{cost}(S,W) \leq 2b \times \text{cost} \)
 – \(\text{cost}(W,C') \leq b \times \text{cost}(W,W) \)

 \[\leq 2b \times \text{cost}(W,C) \leq 2b \times (2b \times \text{cost} + \text{cost}) \]
 – The total cost is \((4b^2 + 2b) \times \text{cost}\)
k-median wrap up

- $O(1)$-Approximate Metric k-median using $O(kn^\alpha)$ space, for any constant $\alpha > 0$
- Can achieve $O(k \log^2 n)$

 [Charikar-O'Callaghan-Panigrahy’03], based on [Meyerson’01]