Sparse recovery via greedy algorithms

Piotr Indyk
MIT

Lecture 9
Compressed Sensing: Recap

- Want to acquire a signal \(x = [x_1 \ldots x_n] \)
- Acquisition proceeds by computing \(Ax (+\text{noise}) \) of dimension \(m << n \)
- From \(Ax \) we want to recover an approximation \(x^* \) of \(x \)
 - Note: \(x^* \) does not have to be \(k \)-sparse in general
- Method: solve the following program:

 minimize \(||x^*||_1 \)
 subject to \(Ax^* = Ax \)

- Guarantee: for some \(C > 1 \)

 \[
 (1) \ ||x - x^*||_1 \leq C \min_{k\text{-sparse } x''} ||x - x''||_1
 \]

 as long as \(A \) satisfies \((ck, \delta)\text{-RIP}_p \), for \(p=1 \) or \(p=2 \)

 \[
 (1-\delta) \ ||x||_p \leq ||Ax||_p \leq (1+\delta) \ ||x||_p
 \]

- Main drawback: running time
 - Somewhat alleviated by using sparse matrices
 (or Fourier matrices, see next slide)

Lecture 8
Results

<table>
<thead>
<tr>
<th>Paper</th>
<th>Rand. / Det.</th>
<th>Sketch length</th>
<th>Encode time</th>
<th>Column sparsity</th>
<th>Recovery time</th>
<th>Approx</th>
</tr>
</thead>
</table>

Lecture 9
<table>
<thead>
<tr>
<th>Paper</th>
<th>R/ D</th>
<th>Sketch length</th>
<th>Encode time</th>
<th>Column sparsity</th>
<th>Recovery time</th>
<th>Approx</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CCF’02], [CM’06]</td>
<td>R</td>
<td>k log n</td>
<td>n log n</td>
<td>log n</td>
<td>n log n</td>
<td>l2 / l2</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>k log c n</td>
<td>n log c n</td>
<td>log c n</td>
<td>k log c n</td>
<td>l2 / l2</td>
</tr>
<tr>
<td>[CM’04]</td>
<td>R</td>
<td>k log n</td>
<td>n log n</td>
<td>log n</td>
<td>n log n</td>
<td>l1 / l1</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>k log c n</td>
<td>n log c n</td>
<td>log c n</td>
<td>k log c n</td>
<td>l1 / l1</td>
</tr>
<tr>
<td>[CRT’04] [RV’05]</td>
<td>D</td>
<td>k log(n/k)</td>
<td>nk log(n/k)</td>
<td>k log(n/k)</td>
<td>n^c</td>
<td>l2 / l2</td>
</tr>
<tr>
<td>[GSTV’06] [GSTV’07]</td>
<td>D</td>
<td>k log c n</td>
<td>n log c n</td>
<td>log c n</td>
<td>k log c n</td>
<td>l1 / l1</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>k log c n</td>
<td>n log c n</td>
<td>log c n</td>
<td>k log c n</td>
<td>l2 / l1</td>
</tr>
<tr>
<td>[BGIKS’08]</td>
<td>D</td>
<td>k log(n/k)</td>
<td>n log(n/k)</td>
<td>log(n/k)</td>
<td>n^c</td>
<td>l1 / l1</td>
</tr>
<tr>
<td>[GLR’08]</td>
<td>D</td>
<td>k log n logloglogn</td>
<td>kn^{1-a}</td>
<td>n^{1-a}</td>
<td>n^c</td>
<td>l2 / l2</td>
</tr>
<tr>
<td>[NV’07], [DM’08], [NT’08], [BD’08], [GK’09], …</td>
<td>D</td>
<td>k log(n/k)</td>
<td>nk log(n/k)</td>
<td>k log(n/k)</td>
<td>nk log(n/k) * log</td>
<td>l2 / l1</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>k log c n</td>
<td>n log n</td>
<td>log c n</td>
<td>n log n * log</td>
<td>l2 / l1</td>
</tr>
<tr>
<td>[IR’08], [BIR’08],[BI’09],[P’10]</td>
<td>D</td>
<td>k log(n/k)</td>
<td>n log(n/k)</td>
<td>log(n/k)</td>
<td>n log(n/k)* log</td>
<td>l1 / l1</td>
</tr>
<tr>
<td>[GLSP’09]</td>
<td>R</td>
<td>k log(n/k)</td>
<td>n log c n</td>
<td>log c n</td>
<td>k log c n</td>
<td>l2 / l1</td>
</tr>
</tbody>
</table>

Caveats: (1) most “dominated” results not shown (2) only results for general vectors x are displayed (3) sometimes the matrix type matters (Fourier, etc)
Matching Pursuit(s)

• Iterative algorithm: given current approximation x^*, try to find an update

Iterative algorithm: given current approximation x^*:
 – Find (possibly several) i s. t. A_i “correlates” with $Ax-Ax^*$. This yields i and z s. t.
 \[||x^*+ze_i-x||_p < ||x^* - x||_p \]
 – Update x^*
 – Sparsify x^* (keep only k largest entries)
 – Repeat

• Norms:
 – $p=2$: CoSaMP, SP, IHT etc (based on RIP)
 – $p=1$: SMP, SSMP (based on RIP-1)
 – $p=0$: LDPC bit flipping (based on expander matrices)
Iterated Hard Thresholding

- **Setup:**
 - x: k-sparse
 - A: satisfies RIP of order $3k$ with constant δ
 - $y = Ax + e$

- **Algorithm:**
 - $x^0 = 0$
 - Repeat $t = O(\log [||x||_2 / ||e||_2])$

\[x^{i+1} = H_k[x^i + A^T(y - Ax^i)] \]

where $H_k[x]$ returns the k largest (in magnitude) coefficients of x
\[x^{i+1} = H_k[x^i + A^T(y - Ax^i)] : \text{intuition} \]

- Suppose that all columns of \(A \) were orthogonal, i.e., \(A^T A = I \)
- Then \(x^i + A^T(y - Ax^i) \)
 \[= x^i + A^T A x + A^T e - A^T A x^i \]
 \[= x^i + x + A^T e - x^i \]
 \[= x + A^T e \]
- Thus, modulo \(e \), \(H_k[x + A^T e] \) would return a correct answer
- We will show that RIP implies that \(A^T A \) is “close to” \(I \), at least when applied to “sparse” vectors
Running time

• Compute
 \[x^{i+1} = H_k[x^i + A^T(y - Ax^i)] \]
 \[t = O(\log \frac{\|x\|_2}{\|e\|_2}) \text{ times} \]

• Time dominated by computing \(Ax, A^T y \)

• Options:
 – A is a Gaussian matrix: time \(O(nmt) \)
 – A consists of random rows of Fourier matrix: time \(O(n \log n t) \)
 • But \(m = O(k \log^c n) \) to get RIP [Candes-Tao, Rudelson-Vershynin]
Sequential Sparse Matching Pursuit

• Algorithm:
 - \(x^* = 0 \)
 - Repeat \(t \) times
 - Repeat \(S = O(k) \) times
 - Find \(i \) and \(z \) that minimize \(||A(x^* + ze_i) - Ax||_1 \)
 - \(x^* = x^* + ze_i \)
 - Sparsify \(x^* \)
 (set all but \(k \) largest entries of \(x^* \) to 0)

* Set \(z = \text{median}[(Ax^*-Ax)_{N(i)}] \). Instead, one could first optimize (gradient) \(i \) and then \(z \) [Fuchs’09]
Approximation guarantee intuition

- Want to find k-sparse x^* that minimizes $||x-x^*||_1$
- By RIP1, this is approximately the same as minimizing $||Ax-Ax^*||_1$
- Need to show we can do it *greedily*, i.e., can find i, z s.t
 $||A(x^*+ze_i)-Ax||_1 < (1-1/(ck)) ||Ax^*-Ax||_1$
- This is a somewhat subtle issue. E.g., consider $A=\begin{bmatrix} a_1 & a_2 \end{bmatrix}$
- Need to show we are always in case (2), not (1)
- Approaches:
 - Analyze the overlaps between the columns (expansion) [Berinde-Indyk’09]
 - Use the fact that $||Ax^*||_1 > (1-\delta)\Sigma_i x_i ||a_i||_1$
 which is a restatement of RIP-1 [Price’10]
Results

<table>
<thead>
<tr>
<th>Paper</th>
<th>R/D</th>
<th>Sketch length</th>
<th>Encode time</th>
<th>Column sparsity</th>
<th>Recovery time</th>
<th>Approx</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CCF'02], [CM'06]</td>
<td>R</td>
<td>k log n</td>
<td>n log n</td>
<td>log n</td>
<td>n log n</td>
<td>l2 / l2</td>
</tr>
<tr>
<td>[CM'04]</td>
<td>R</td>
<td>k log c n</td>
<td>n log c n</td>
<td>log c n</td>
<td>k log c n</td>
<td>l2 / l2</td>
</tr>
<tr>
<td>[CRT'04], [RV'05]</td>
<td>D</td>
<td>k log(n/k)</td>
<td>nk log(n/k)</td>
<td>k log(n/k)</td>
<td>n^c</td>
<td>l2 / l1</td>
</tr>
<tr>
<td>[GSTV'06], [GSTV'07]</td>
<td>D</td>
<td>k log c n</td>
<td>n log c n</td>
<td>log c n</td>
<td>k log c n</td>
<td>l2 / l1</td>
</tr>
<tr>
<td>[BGIKS'08]</td>
<td>D</td>
<td>k log(n/k)</td>
<td>n log(n/k)</td>
<td>log(n/k)</td>
<td>n^c</td>
<td>l2 / l1</td>
</tr>
<tr>
<td>[GLR'08]</td>
<td>D</td>
<td>k log n log log n</td>
<td>kn^1-a</td>
<td>n^1-a</td>
<td>n^c</td>
<td>l2 / l1</td>
</tr>
<tr>
<td>[NV'07], [DM'08], [NT'08], [BD'08], [GK'09], ...</td>
<td>D</td>
<td>k log(n/k)</td>
<td>nk log(n/k)</td>
<td>k log(n/k)</td>
<td>nk log(n/k) * log</td>
<td>l2 / l1</td>
</tr>
<tr>
<td>[IR'08], [BIR'08], [BI'09],[P'10]</td>
<td>D</td>
<td>k log c n</td>
<td>n log n</td>
<td>k log c n</td>
<td>n log n * log</td>
<td>l2 / l1</td>
</tr>
<tr>
<td>[GLSP'09]</td>
<td>R</td>
<td>k log(n/k)</td>
<td>n log c n</td>
<td>log c n</td>
<td>k log c n</td>
<td>l2 / l1</td>
</tr>
</tbody>
</table>

Caveats: (1) most “dominated” results not shown (2) only results for general vectors x are displayed (3) sometimes the matrix type matters (Fourier, etc)