What can we do in sublinear time?

Sublinear Algorithms
Lecture 11

Ronitt Rubinfeld
Too much input? Too little time?
Models:

- **Sublinear time**
 - Random access queries
 - Samples

- **Sublinear space:**
 - Data stream
 - Sketching
Sublinear time models:

• Random Access Queries
 – Can access any word of input in one step

• Samples
 – Can get sample of a distribution in one step,
 – Alternatively, can only get random word of input in one step
 • When computing functions depending on frequencies of data elements
 • When data in random order

\[x_1, x_2, x_3, \ldots \]
What can we hope to do without viewing most of the data?

• Change our goals?
 – for most interesting problems: algorithm must give approximate answer
What types of approximation?

• “Classical” approximation for optimization problems: output is number that is close to value of the optimal solution for given input. (not enough time to construct a solution)

• Property testing for decision problems: output is correct answer for given input, or at least for some other input “close” to it.

• Both types of approximations are also useful for distributions
I. Classical Approximation Problems
First:

- A very simple example –
 - Deterministic
 - Approximate answer
 - And (of course)…. Sublinear time!
Approximate the diameter of a point set [Indyk]

• Given: \(m \) points, described by a distance matrix \(D \), s.t.
 – \(D_{ij} \) is the distance from \(i \) to \(j \).
 – \(D \) satisfies triangle inequality and symmetry.
 (note: input size \(n = m^2 \))
• Let \(i, j \) be indices that maximize \(D_{ij} \) then \(D_{ij} \) is the diameter.
• Output: \(k,l \) such that \(D_{kl} \geq D_{ij}/2 \)

weak approximation!
Algorithm

• Algorithm:
 – Pick k arbitrarily
 – Pick l to maximize $D_{kl}
 – Output D_{kl}

• Why does it work?
 \[D_{ij} \leq D_{ik} + D_{kj} \text{ (triangle inequality)} \]
 \[\leq D_{kl} + D_{kl} \text{ (choice of } l \text{ + symmetry of } D) \]
 \[\leq 2D_{kl} \]

• Running time? $O(m) = O(n^{1/2})$
More classical approximations?

• Later on (today, next week…)
 – Number of connected components
 – Minimum Spanning Tree
 – Other combinatorial optimization problems
 • Vertex cover
 • Maximum matching
II. Property testing
Main Goal:

- Quickly distinguish inputs that have specific property from those that are far from having the property.

All inputs

- Inputs with the property
- Close to having property
Property Testing

• Properties of any object, e.g.,
 – Functions
 – Graphs
 – Strings
 – Matrices
 – Codewords

• Model must specify
 – representation of object and allowable queries
 – notion of close/far, e.g.,
 • number of bits/words that need to be changed
 • edit distance
A simple property tester
Monotonicity of a sequence

- Given: list \(y_1, y_2, \ldots, y_n \)
- Question: is the list sorted?

- Clearly requires \(n \) steps – must look at each \(y_i \)
Monotonicity of a sequence

- Given: list y_1, y_2, \ldots, y_n

- Question: can we quickly test if the list close to sorted?
What do we mean by ``quick''?

- **query complexity** measured in terms of list size n

- Our goal (if possible):
 - *Very small* compared to n, will go for $clog n$
What do we mean by “close”?

Definition: a list of size n is ε-close to sorted if can delete at most εn values to make it sorted. Otherwise, ε-far.

Sorted: 1 2 4 5 7 11 14 19 20 21 23 38 39 45
Close: 1 4 2 5 7 11 14 19 20 39 23 21 38 45
Far: 45 39 23 1 38 4 5 21 20 19 2 7 11 14
Requirements for algorithm:

- Pass sorted lists
- Fail lists that are ε-far.
 - Equivalently: if list likely to pass test, can change at most ε fraction of list to make it sorted

Probability of success $> \frac{3}{4}$
(can boost it arbitrarily high by repeating several times and outputting majority answer)

- Can test in $O(1/\varepsilon \log n)$ time
 - [Ergun, Kannan, Kumar, Rubinfeld, Viswanathan]
 - best possible [EKKRV] + [Fischer]
An attempt:

- Proposed algorithm:
 - Pick random i and test that $y_i \leq y_{i+1}$

- Bad input type:
 - $1,2,3,4,5,...,n/4, 1,2,...,n/4, 1,2,...,n/4$
 - Difficult for this algorithm to find “breakpoint”
 - But other tests work well…
A second attempt:

- Proposed algorithm:
 - Pick random $i < j$ and test that $y_i \leq y_j$
- Bad input type:
 - $n/4$ groups of 4 decreasing elements
 - $4, 3, 2, 1, 8, 7, 6, 5, 12, 11, 10, 9, ...$, $4k, 4k-1, 4k-2, 4k-3, ...$
 - Largest monotone sequence is $n/4$
 - must pick i, j in same group to see problem
 - need $\Omega(n^{1/2})$ samples
A minor simplification:

• Assume list is distinct (i.e. $x_i \neq x_j$)

• Claim: this is not really easier
 – Why?
 Can “virtually” append i to each x_i

 \[
 x_1, x_2, \ldots, x_n \rightarrow (x_1, 1), (x_2, 2), \ldots, (x_n, n)
 \]
 e.g., $1, 1, 2, 6, 6 \rightarrow (1, 1), (1, 2), (2, 3), (6, 4), (6, 5)$
 Breaks ties without changing order

(historical note: this is an old trick used in parallel algorithms to break ties)
A test that works

• The test:

Test $O(1/\varepsilon)$ times:
 • Pick random i
 • Look at value of y_i
 • Do binary search for y_i
 • Does the binary search find any inconsistencies? If yes, FAIL
 • Do we end up at location i? If not FAIL
 – Pass if never failed

• Running time: $O(\varepsilon^{-1} \log n)$ time
• Why does this work?
Behavior of the test:

• Define index i to be good if binary search for y_i successful

• $O(1/\varepsilon \log n)$ time test (restated):
 – pick $O(1/\varepsilon)$ i’s and pass if they are all good

• Correctness:
 – If list is sorted, then all i’s are good (uses distinctness)
 • So test always passes
 – If list likely to pass test,
 • Then at least $(1-\varepsilon)n$ i’s are good.
 • Main observation: good elements form increasing sequence
 – Proof: for $i<j$ both good need to show $x_i < x_j$
 • let $k =$ least common ancestor of i,j
 • Search for i went left of k and search for j went right of k →
 $x_i < x_k < x_j$
 • Thus list is ε-close to monotone (delete $< \varepsilon n$ bad elements)
III. Classical Approximation Problems (more examples)
Minimum spanning tree (MST)

• What is the cheapest way to connect all the dots?

• Best known:
 – Deterministic $O(m \alpha(m))$ time [Chazelle]
 – Randomized $O(m)$ time [Karger Klein Tarjan]
A sublinear time algorithm:
[Chazelle R. Trevisan]

Given input graph with
- weights in $[1..w]$
- average degree d
- adjacency list representation

outputs $(1+\varepsilon)$-approximation to MST in time
$O(dw\varepsilon^{-3} \log dw/\varepsilon)$

Remarks: (1) sublinear when $dw=o(m)$
 constant when d,w bounded
(2) we also know that $\Omega(dw\varepsilon^{-2})$ required
(3) case of integral weights, max degree d can be done in $O(dw \varepsilon^{-2} \log w/\varepsilon)$ time
Idea behind algorithm:

• characterize MST weight in terms of number of connected components in certain subgraphs of G

• show that number of connected components can be estimated quickly
MST and connected components

Suppose all weights are 1 or 2. Then MST weight

\[\text{weight} = \# \text{weight 1 edges} + 2 \cdot \# \text{weight 2 edges} \]

\[= n - 1 + \# \text{of weight 2 edges} \]

\[= n - 2 + \# \text{of conn. comp. induced by weight 1 edges} \]
Suppose all weights are 1 or 2. Then MST weight
\[
= \# \text{weight 1 edges} + 2 \cdot \# \text{weight 2 edges}
\]
\[
= n - 1 + \# \text{of weight 2 edges}
\]
\[
= n - 2 + \# \text{of conn. comp. induced by weight 1 edges}
\]
• For integer weights 1..w let
 \[c(i) = \# \text{ of connected components induced by edges of weight at most } i \]
• Then MST weight is
 \[n - w + \sum_{i=1,\ldots,w-1} c(i) \]
• additive approximation of \(c(i) \)'s to within \(\epsilon n/w \) gives additive approx of MST to within \(\epsilon n \)
 – Since MST > n-1, also gives multiplicative approximation of MST to within \(1\pm\epsilon \)
Approximating number of connected components:

• Given input graph with
 – max degree d
 – adjacency list representation

• outputs additive approximation to within ε_0n of the number of connected components in time $O(d \varepsilon_0^{-2} \log 1/\varepsilon_0)$

• Can show $\Omega(d \varepsilon_0^{-2})$ time is required
Approximating # of connected components

• Let \(c \) = number of components
• For every vertex \(u \), define
 \[n_u := \frac{1}{\text{size of component of } u} \]
 for any connected component \(A \subseteq V \),
 \[\sum_{u \in A} n_u = 1 \]
 \[\sum_u n_u = c \]
Main idea

• Estimate sum of approximations of n_u’s via sampling

• To estimate $n_u \equiv 1 / \text{size of component of } u$ quickly:
 – If size of component is big, then n_u is small so easy to estimate (similar to property tester for connectivity [Goldreich Ron])
 – Suffices to compute n_u exactly only for small components
Some more details:

Estimating $n_u \equiv 1 / \text{size of u's component}$:

- let $\tilde{n}_u := \max \{n_u, \varepsilon_0/2\}$
 - When size of u’s component is $< 2/\varepsilon_0$, $\tilde{n}_u = n_u$
 - Else $\tilde{n}_u = \varepsilon_0/2$

- $|n_u - \tilde{n}_u| < \varepsilon_0/2$ so $c = \sum_u n_u = \sum_u \tilde{n}_u \pm \varepsilon_0 n / 2$

- can compute \tilde{n}_u quickly
 - in time $O(d/\varepsilon_0)$ with BFS
Not quite optimal algorithm:

CC-APPROX(ε_0):

Repeat $O(1/\varepsilon_0^3)$ times
 pick a random vertex v
 compute \bar{n}_v via BFS from v, stopping after at most $2/\varepsilon_0$ new nodes
return (average of the values \bar{n}_v) \cdot n

Run time: $O(d /\varepsilon_0^4)$
Correctness

• Chernoff bounds \rightarrow algorithm gives good estimate of average/sum of the \bar{n}_v values
• Previous arguments \rightarrow good estimate of average of the \bar{n}_v values gives (slightly less) good estimate of average/sum of the n_v values
• Estimate of sum of the n_v values gives estimate of number of connected components via $\sum_u n_u = c$
Improvement for MST:

This gives MST algorithm with runtime $O(dw^2 \varepsilon^{-4})$

Can do better:

$\quad O(dw\varepsilon^{-3} \log dw/\varepsilon)$ algorithm
Further work:

• Euclidean MST approximation algorithm
 [Czumaj Ergun Fortnow Newman Magen Rubinfeld Sohler]
 – Given access to certain data structures can do better

• Metric MST [Czumaj Sohler]
 – \((1+\varepsilon)\)-approximation in time \(\tilde{O}(n)\)