Admin: New students - meet TA's

Note bug in HW#1 (problem 4) assignment; correct version now posted.

Outline:
- Divide & Conquer; Master Theorem
- Convex Hull (in 2D) in time $O(n \log n)$
- Medians in time $O(n)$
Divide & Conquer

Given a problem of size n:

- Divide it into a subproblems of size $\frac{n}{b}$

- Solve each subproblem recursively ("conquer")

- Combine solutions of subproblems to get overall solution

Notes:

- Most frequently $b = 2$, so problems are "half-size"

- In principle, subproblems may have quite different sizes, but usually they are equal-sized.

- May need more expressive notion of size, e.g. $\#\text{vertices} \& \#\text{edges}$ for a graph problem

- If n is not divisible by b, some subproblems may have size $\lfloor \frac{n}{b} \rfloor$, and some may have size $\lceil \frac{n}{b} \rceil$. (See book...)
Analysis of D&C ("Master Theorem") [Ref. ch. 4]

Suppose $a \geq 1$ & $b > 1$ are fixed integers.

Let $T(n)$ denote w.c. running time on input of size n.

Suppose $n = b^h$ (see book for general case; same answer)

Suppose

$$T(n) = \begin{cases}
\Theta(1) & \text{if } n=1 \\
agT(n/b) + \Theta(n^p \log^q n) & \text{if } n > 1
\end{cases}$$

for some values $p \geq 0$ & $q \geq 0$.

Then

$$T(n) = \begin{cases}
\Theta(n^p \log^q n) & \text{if } p > \log_b a \\
\Theta(n^p \log^{q+1} n) & \text{if } p = \log_b a \\
\Theta(n^{\log_b a}) & \text{if } p < \log_b a
\end{cases}$$
Recursion Tree:

\[
\begin{align*}
\text{Site} & \quad \text{work}(q=0) \\
& = n^p \\
& = a \cdot (n/b)^p \\
& = a^2 \cdot (n/b^2)^p \\
& = \ldots \\
& = a^h \cdot (1)^p \text{ or } a^h \cdot \Theta(1)
\end{align*}
\]

\[
\begin{align*}
\text{input size} & \quad n = b^h \\
a & = b^{\log_b a} \\
c & = b^{\log_b a} \\
& = (b^{\log_b a})^h = (b^h)^{\log_b a} = n^{\log_b a} \\
& = \text{# leaves}
\end{align*}
\]

Assume \(q = 0 \) (see book for general case, Ex. 4.6-2)

\[
\text{Work} = \sum_{i=0}^{h} a^i \cdot (n/b^i)^p = n^p \cdot \sum_{i=0}^{h} \left(\frac{a}{b^p}\right)^i
\]

\[
\text{sum of geometric series}
\]

Root = \(\Theta(n^p) \) if \(p > \log_b a \) (decreasing series)

Even = \(\Theta(n^p \log n) \) if \(p = \log_b a \) (all terms =, \(h = \log_bn \))

Leaves = \(\Theta(\text{last term}) = \Theta(n^p \cdot \frac{a^h}{b^h n}) = \Theta(n^p \cdot \frac{n^{\log_b a}}{n^p}) = \Theta(n^{\log_b a}) \)
Convex Hull

- Nice example of D&C
 \[T(n) = 2T(n/2) + \Theta(n) \]
 (same soln as mergesort: \(T(n) = \Theta(n \log n) \))
- Given \(n \) points in plane \(S = \{(x_i, y_i) | i=1,2,\ldots,n\} \)
 (Assume no two have same \(x \) coord, and
 no two have same \(y \) coord, and
 no three in a line, for convenience.)
- Define convex hull of \(S \), \(CH(S) \), as smallest
 polygon containing all pts in \(S \).
- If pts are "nails", then \(CH(S) \) is shape
 of rubber band around all the nails.

Represent \(CH(S) \) as sequence of pts on boundary,
 in order (e.g. as doubly-linked list). (clockwise)
Idea:
- Sort points by x-coord (once & for all; time $\Theta(n \log n)$)
- For input set S of points:
 - Divide into "left-half" A & "right-half" B by x-coords
 - Compute $CH(A)$ & $CH(B)$, recursively
 - Combine CH's of two halves ("merge")

- Algorithm is due to Preparata & Hong, CACM (1977)

- If we can do merge in time $\Theta(n)$, then overall running time $T(n)$ satisfies recurrence

$$T(n) = 2T(n/2) + \Theta(n)$$

$$= \Theta(n \log n)$$ via Master Thm

- How to do merge in linear time?

\[
\begin{align*}
 CH(A) &= \langle a_1, a_2, a_3, a_4 \rangle \\
 CH(B) &= \langle b_1, b_2, b_3 \rangle \\
 CH(S) &= \langle a_2, a_3, a_4, b_3, b_1 \rangle
\end{align*}
\]
To find upper tangent:

- Assume wlog: a_i maximizes x within $CH(A)$
 b_i minimizes x within $CH(B)$

- Define L as vertical line separating A & B (see fig)

- Define $y(i,j)$ as y-coordinate of pt of intersection between L & segment (a_i, b_j)

- Claim: (a_i, b_j) is upper tangent iff it maximizes $y(i,j)$

 (Proof: exercise)

- Algorithm to find upper tangent:

 $\begin{align*}
 i &= 1 & \text{(left finger on a_i)} \\
 j &= 1 & \text{(right finger on b_i)} \\
 \text{while } y(i,j+1) > y(i,j) \text{ or } y(i-1,j) > y(i,j):} \\
 &\quad \text{if } y(i,j+1) > y(i,j): \\
 &\quad\quad j = j + 1 \pmod{8} & \text{(move right finger}) \\
 &\quad\text{else:} \\
 &\quad\quad i = i - 1 \pmod{p} & \text{(move left finger}) \\
 \text{return } (a_i, b_j) \text{ as upper tangent}
 \end{align*}$

- Similarly for lower tangent

- Note: Preparata & Hong give a slightly different method.
Median-Finding

Ref: §9.3: Blum, Floyd, Pratt, Rivest, Tarjan (1973)

Given set of n numbers, define range(x) as number of numbers in set that are ≤ x.

\[x: 2, 3, 9, 13, 29, 41 \]

\[\text{range}(x): 1, 2, 3, 4, 5, 6 \]

\(\text{(lower) median = element of range} \) \[\left\lceil \frac{n+1}{2} \right\rceil \] \(\text{(e.g. 9)} \)

\(\text{(upper) median = } \) \[\left\lceil \frac{n+1}{2} \right\rceil \] \(\text{(e.g. 13)} \)

Selection problem: Given set S of n (distinct) numbers, and i (1 ≤ i ≤ n), find number \(x \in S \) s.t. \(\text{range}(x) = i \). (i.e. i-th smallest)

Clearly sorting works, in time \(\Theta(n \lg n) \).

Can we beat \(\Theta(n \lg n) \)?

Yes, with D&C (\& unusual recurrence!)

(No Master Theorem!)
Idea: (for computing elt of rank \(i\) from \(S\))

Select \((S, i)\):
- Pick \(x \in S\) (cleverly, somehow!)
- Compute \(k = \text{rank}(x)\)

 \[
 B = \{y \in S \mid y < x\} \\
 C = \{y \in S \mid y > x\}
 \]

\[
\begin{array}{ccc}
B & \rightarrow & x \\
\downarrow & & \downarrow \\
\text{elts} & & \text{elts} \\
\end{array}
\]

- if \(k = i\) : return \(x\)
- if \(k > i\) : return Select\((B, i)\)
- if \(k < i\) : return Select\((C, i-k)\)

Let \(T(n, i) = \text{time to compute \(i^{th}\) smallest from } S, \text{ when } |S| = n\)

\[
T(n) = \max_{1 \leq i \leq n} T(n, i)
\]

\[
T(n) \leq \left[\text{time to pick } x\right] + \max_{1 \leq k \leq n} T\left(\max\left(k, n-k\right)\right)
\]

Need to pick \(x\) s.t. \(\text{rank}(x)\) is not extreme. How?
(Can't afford to use median; want something median-like)
To pick x^*:

- Arrange S into columns of size 5 ($\lceil n/5 \rceil$ columns)
- Sort each column (big els on top) [linear time!]
- Find "median of medians" as x

Recurrence:

$$T(n) = \begin{cases}
\Theta(1) & \text{for } n \leq 140 \\
T(\lceil n/5 \rceil) + T(\frac{7n}{10} + 6) + \Theta(n) & \text{otherwise}
\end{cases}$$

Intuition: By doing recursion on $n/5$, get to discard $\geq 3n/10$ els.
Prove $T(n) \leq c \cdot n$ by induction, for some large enough c

- True for $n \leq 140$ by choosing c large.

- $T(n) \leq c \cdot \left\lceil \frac{n}{5} \right\rceil + c \left(\frac{7n}{10} + 6 \right) + an$ (for a large enough term to cover $\Theta(n)$ term)

$$\leq \frac{cn}{5} + c + \frac{7nc}{10} + 6c + an$$

$$= cn + \left(-\frac{cn}{10} + 7c + an \right)$$

if this is ≤ 0, we are done with proof.

\implies

$c \geq \frac{70c}{n} + 10a$

Ok for $n > 140$ & $c \geq 20a$ √