Admin:

Today:

- Universal hashing
 (randomly choosing hash fn)

- Perfect hashing
 (no collisions?)
"Dictionary": Abstract Data Type:

1. create
2. insert \((x)\)
3. search \((\text{key})\)
4. delete \((x)\)

- Assume elements have distinct keys \(x, \text{key}\)
- Note: balanced BST's solve in time \(O(\log n)\) per op, (plus they do other ops, like "successor", though)
- Can we do better? Yes!

Hashing: \(O(1)\) **average** time per op; \(O(n)\) space for \(n\) items

\(n = \# \text{ keys in table}\)
\(m = \# \text{ slots in table}\)

\(h = \text{hash fn mapping keys } \rightarrow \{0, 1, \ldots, m-1\}\) "pseudo-random"

```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
Load factor $\alpha = n/m = E(n_j)$

where $n_j =$ length of jth list

Thm: Hashing with chaining achieves time (on average) $\Theta(1+\alpha)$

per operation (insert, unsuccessful search, successful search delete)

[Successful search is most interesting since longer lists more likely to be searched. See Thm 11.2 in book.]

Note problem: worst-case can be bad (all keys have same hash value) $\Rightarrow \Theta(n)$ time (average & w.c.) for that set of keys.

We'll fix this with universal hashing.
Distribution of list lengths ξ_j: average is α

Note: $e^\alpha = \sum_{k \geq 0} \frac{\alpha^k}{k!}$

Poisson dist with mean α

$$\Pr\{X = k\} = \frac{e^{-\alpha} \alpha^k}{k!}$$

Good approximation to distribution of lengths (with random h)

E.g. Suppose $n = m$ so $\alpha = 1$

$$\Pr(n_j = 0) = \frac{e^{-1} \alpha^0}{0!} = \frac{1}{e} = 0.3679$$

37% empty

$$\Pr(n_j = 1) = \frac{e^{-1} \alpha^1}{1!} = \frac{1}{e} = 0.3679$$

37% size 1

$$\Pr(n_j = 2) = \frac{e^{-1} \alpha^2}{2!} = \frac{1}{2e} = 0.1839$$

18% size 2

$$\Pr(n_j = 3) = \frac{e^{-1} \alpha^3}{3!} = \frac{1}{6e} = 0.0613$$

6% size 3

$$\Pr(n_j = 4) = \frac{e^{-1} \alpha^4}{4!} = \frac{1}{24e} = 0.0153$$

1.5% size 4

...$

\text{Thm: Let } \eta_\star = \max_j n_j \quad (\text{for } \alpha = 1)\n
\text{Then } \eta_\star \leq \frac{3 \ln(n)}{\ln \ln n} \text{ with probability } > 1 - \frac{1}{n}.$$

[Ref: Probability & Computing by Mitzenmacher & Upfal]
Universal hashing

- Gets good $O(1 + \alpha)$ performance for any fixed set of keys & searches (no bad inputs)

- **Idea:** choose hash function randomly when table is created, from a family of universal hash functions.

Let \mathcal{H} be a family of hash functions, mapping into $\{0, 1, \ldots, m-1\}$.

Def: \mathcal{H} is universal if

For all keys k_1, k_2 ($k_1 \neq k_2$)

$$\Pr_{h \in \mathcal{H}} \{ h(k_1) = h(k_2) \} \leq \frac{1}{m}$$

Probability that k_1, k_2 collide (end up on same list) is $\leq 1/m$.
Thm Let \(k_1, k_2, \ldots, k_n \) be distinct keys.

Let \(h \) be chosen from a universal family \(\mathcal{H} \) of hash functions.

Let \(k \) be any key (perhaps = to some \(k_i \)).

Then
\[
E \left(\left| \sum_{k_i : h(k) = h(k)} \right| \right) \leq 1 + \alpha = 1 + \frac{n}{m}
\]

Pr: Each key \(k_i \), \(k_i \neq k \), is on \(k \)'s list with probability \(1/m \).

Of course \(h(k) = h(k) \), which explains the "1", since we may have \(k = k_i \) for some \(i \).

Thus Insert, Delete, & Search cost \(O(1 + \alpha) \) for any set of keys (on average, over choice of \(h \in \mathcal{H} \)).

Do universal hash families exist? Yes!
Suppose \(m = p \) (a prime).

Consider \(h = h_{ab} \) where \(h(x) = a \cdot x + b \pmod{p} \) \(a \neq 0, 0 \leq b < p \).

\[H = \{ h_{ab} \} \quad |H| = (p-1) \cdot p \]

"lines" \(\pmod{p} \)

\[y = ax + b \]

Thm: \(H \) is universal (mapping \(\mathbb{Z}_p \) into \(\mathbb{Z}_p \))

Pf: Let \(k, l \) be two keys, \(k \neq l \).

Given \(h_{ab} \), we can compute \(h_{ab}(k) = ak + b \pmod{p} = r \)

\[h_{ab}(l) = al + b \pmod{p} = s \]

Claim: \(r \neq s \) (\(h_{ab} \) is 1 to 1)

since \(r - s = a \cdot (k - l) \neq 0 \pmod{p} \)

since \(a \neq 0, l \neq k \)

So \(\text{prob}\{h_{ab}(k) = h_{ab}(l)\} = 0 \)

But here key space has size \(p \), and memory has size \(p \).

What if we want \(p \) keys, but memory \(m \ll p \)?
Thm: Suppose p is prime, and $m < p$. Then

$$H' = \left\{ h_{ab} : h_{ab}(x) = h_{ab}(x) \mod m \right\}$$

is universal. [Note $a \in \mathbb{Z}_p^*$, $b \in \mathbb{Z}_p$ as before, so $|H'| = p(p-1)$]

(Just reduce what we had, mod m.)

Prf: Fix k, l keys (mod p), $k \neq l$.

Then $r = h_{ab}(k)$, $s = h_{ab}(l)$ are rv's & $r \neq s$.
All pairs (r, s) s.t. $r \neq s$ are equally likely.

For any fixed r, # values of s that are $\equiv r$ (mod m)

$$1 \leq \left\lceil \frac{p}{m} \right\rceil - 1$$

(He -1 since $r \neq s$ (mod p))

But $\left\lceil \frac{p}{m} \right\rceil - 1 \leq \frac{(p-1)}{m}$

There are $p-1$ choices for s, but $prob = r$ (mod m) $\leq \frac{1}{m}$. \(\square\)
Perfect Hashing

- When set of keys is \textit{static}, we can get time/op down to \(O(1) \) in \textit{worst-case}.

- Uses universal hashing in \textit{two-level scheme}.

 Given keys \(k_1, k_2, \ldots, k_n \)

 \[h_i(k_i) = j \]

 \[\text{level one} \rightarrow \text{level two: replace list by 2nd level hash table} \]

 Store \(k_i \) in position \(h_{2,j}(k_i) \) of \(j th \) \textit{table}, where \(j = h_1(k_i) \).

- First-level table has size \(m = n \).

 First level hash fn drawn from universal family mapping to \(0, 1, \ldots, m-1 \).

 Each entry specifies: \(2nd \)-level table of size \(n_j^2 \).

 \[\text{hash function } h_{a,j} \text{ for this table.} \]

- Second-level table has size \(n_j^2 \).
Total space used = $\Theta(n + \sum_{j=0}^{m-1} n_j)$

Theorem 1: We can easily find h_1 s.t. space = $\Theta(n)$

Theorem 2: For each j, we can easily find $h_{2,j}$ s.t. $h_{2,j}$ is collision-free on keys with $h(k) = j$.

Thus: overall space = $\Theta(n)$

w.c. lookup time is $\Theta(1)$
Proof of Theorem 2: (Birthday Paradox)

\[\Pr \left\{ h_{2,j}(k_i) = h_{2,j}(k_{i'}) \text{ for some } i' \neq i \text{ in set } j \right\} \]

\[\leq \sum_{i' \neq i} \Pr \left\{ h_{2,j}(k_i) = h_{2,j}(k_{i'}) \right\} \quad \text{(Union bound)} \]

\[\leq \frac{(n_j^2)}{n_j^2} \cdot \frac{1}{n_j^2} \]

\[< \frac{1}{2} \]

Therefore, each \(h_{2,j} \) we try has \(1/2 \) chance of being collision-free. Only need to try 2 such \(h_{2,j} \)s, at most, on average. \(\square \)
Proof of Theorem 1:

\[
Pr \left\{ n + \sum_{j=0}^{m-1} \eta_j^2 \geq cn \right\} \leq \frac{E \left[\sum_{j=0}^{m-1} \eta_j^2 \right]}{cn}
\]

Markov's Inequality

\[
E \left[\sum_{j=0}^{m-1} \eta_j^2 \right] = E \left[\sum_{i=1}^{n} \sum_{i' \neq i} \mathbb{I}_{i, i'} \right]
\]

where \(\mathbb{I}_{i, i'} = \begin{cases} 1 & \text{if } h_i(k_i) = h_{i'}(k_{i'}) \\ 0 & \text{else} \end{cases} \)

\[
= \sum_{i=1}^{n} \sum_{i' \neq i} E \left[\mathbb{I}_{i, i'} \right] \quad \text{(linearity of } E \text{)}
\]

\[
= \sum_{i=1}^{n} E \left[\mathbb{I}_{i, i} \right] + 2 \sum_{i \neq i'} E \left[\mathbb{I}_{i, i'} \right] \quad \text{(universality)}
\]

\[
= n + 2 \left(\frac{n}{2} \right) \cdot \frac{1}{m} \leq 2n
\]

\[
= O(n)
\]

\[
\therefore E \left[n + \sum_{j=0}^{m-1} \eta_j^2 \right] \leq 3n
\]

\[
\therefore Pr \left\{ n + \sum_{j=0}^{m-1} \eta_j^2 \geq 6n^2 \right\} \leq \frac{1}{2}
\]

Thus, each \(h_i \) we try has prob \(\geq \frac{1}{2} \) of having space \(\leq 6n \).

Only need to try 2 such fns, on average. \(\square \)