Lecture 25: Interactive Proofs and Zero Knowledge
Complexity theory

Efficiently solvable: P
Efficiently verifiable: NP

Can randomness change what is (and how to) efficiently verify?

BPP (randomized P)
Central complexity theory questions:

• $P = NP$? (whatever can be efficiently verified is also efficiently solvable?)

• $P=BPP$? (is randomness necessary for efficient solvability?)
Today: Randomness affects how we can efficiently verify proofs!

- Interactive proofs
- Zero-knowledge Interactive proofs
Example: n is a product of 2 primes

Alice: Prover

Bob: Verifier

If p, q prime and $n = pq$ accept else reject
Example: G and G’ are isomorphic

G and G’ isomorphic (denoted $G \cong G'$) if there is a correspondence (bijection) $\varphi: V \rightarrow V'$ such that any edge (u, v) in G iff edge $(\varphi(u), \varphi(v))$ in G'.

e.g., $(1, 4)$ in G and $(1', 4')$ in G'

$(1, 3)$ not in G and $(1', 3')$ not in G'
Graph Isomorphism: How difficult is it?

- Not known to be in P
- In NP (proof = correspondence)
- Not known to be in Co-NP
 - How would you prove there is NO isomorphism?
- Not known to be NP-complete
 - But we don’t think it is...
Proving that G and G' are isomorphic

If correspondence good, ACCEPT, else REJECT

Correspondence φ
How do you prove that G and G' are not isomorphic?

Can’t try all φ!
Shortest classical proof is exponential in n
A quick detour...

• An important prehistorical note....
The Pepsi challenge: (1975)

• Can you tell the difference?
The Pepsi challenge: (1975)

• Can you tell the difference?
• A way to prove it:
 – We give you random samples of Coke and Pepsi
 – If you get it right k times in a row, then we’ll believe you
• Why?
 – If you can tell the difference, you get it right every time
 – If you can’t tell the difference, you get it right with probability $\frac{1}{2}$ each time, so probability you get it right k times in a row is $1/2^k$
 – i.e., if you get it right k times, you either know or you are really lucky!
Proving that G_0 and G_1 are NOT isomorphic

• Bob (verifier):
 – Flips coin $c \in \{0,1\}$ picks random “shuffle” γ
 – Sends randomly shuffled version of G_c i.e., $\gamma \circ G_c$ to Alice (prover)

• Alice (prover):
 (Note, if G_0 and G_1 are NOT isomorphic, then H is isomorphic to only one... so Alice can figure out which one was sent)
 – If H isomorphic to G_0 then output $b=0$
 Else output $b=1$

• Bob (verifier):
 – If Prover gets it right each time “ACCEPT” else “REJECT”
Interactive Proofs

• As in NP
 – The verifier is polynomial time
 – the prover is “all powerful”

• Two new ingredients:
 – Randomness: verifier tosses coins, can err with small probability
 – Interaction: rather than “reading” proof, verifier interacts with prover
Interactive Proofs
[Goldwasser Micali Rackoff 1985]

• Prover:
 – Knows the proof
 – No run time bounds

• Verifier:
 – Doesn’t know anything
 – Probabilistic: can toss coins
 – Polynomial time algorithm
 – Accepts or rejects the proposition
Interactive Proofs

(P,V) is *interactive proof system* for set of theorems L if

1. Completeness:
 - If proposition x is true (i.e., $x \in L$), prover can behave in a way that convinces verifier to always accept
 - i.e. Probability of acceptance = 1

2. Soundness:
 - If proposition is false (i.e., $x \notin L$), then, no matter what the prover does, verifier rejects with high probability
 - i.e., probability of accept is $\leq \frac{1}{2}$
 - If repeat k times, probability of accept $\leq \frac{1}{2^k}$
Efficient interactive proofs are MORE POWERFUL than efficient classical proofs!
The complexity class IP

- Decision problems L such that L has an interactive proof system
IP=PSPACE

• After Graph non-isomorphism, Non-SAT,
 number of satisfying assignments,...

• Thm: IP=PSPACE
Complexity theory

Efficiently solvable: P, BPP (randomized P)
Efficiently verifiable: NP, IP = PSPACE

Can randomness change what is (and how to) efficiently verify? WE THINK SO!
Remarks

• If verifier doesn’t toss coins, then IP=NP
• If prover runs in poly time, then IP=probabilistic poly time
Interactive Proofs

- A third new ingredient
 - Zero Knowledge: verifier doesn’t learn anything except for the statement of the theorem

I will not tell you why G and H are not isomorphic, but I will CONVINCE you that they are not!
Zero Knowledge of Graph non-isomorphism

• Could Bob convince anyone else that the graphs are non-isomorphic?
 – The next verifier would probably pick different random shuffles...
Zero Knowledge Interactive Proofs

• After interaction, V “knows”
 – Statement of theorem is true
 – History of interaction

• Zero-knowledge: V didn’t learn anything except for truth of statement
 – i.e., given truth of statement, V could generate interactions on his own with same distribution
 – A fascinating definition... take more crypto courses!
Back to previous example: G and G’ are isomorphic

Correspondence φ

If correspondence good, Accept, else reject

Verifier learns $G \cong G'$ and correspondence
Interactive Proofs

- **Zero Knowledge**: verifier doesn’t **learn** anything except for the statement of the theorem

 I will not give you the correspondence, but I will prove that I could have if I had wanted to!
Idea for proving $G \cong G'$:

- **Alice:** (knows a correspondence ϕ s.t. $G = \phi \circ G'$)
 - Produces a random graph H (by randomly permuting G according to σ) which is isomorphic to both!
 1. This means she can give correspondence from G to H (i.e. $H = \sigma \circ G$)
 2. And a correspondence from G' to H (i.e. $H = \sigma \circ \phi \circ G'$)

- **Bob:**
 - randomly decides if Alice should demonstrate 1 or 2
 - Since he only sees one of them, he doesn’t actually see the correspondence between G and G'
Back to proving $G = \varphi \circ G'$

- Random permute nodes of G to get $H = \sigma \circ G$ ($= \sigma \circ \varphi \circ G'$)
- Send H to Bob

- Toss coin b and send to Alice
 - If $b=0$, send σ (map from G to H)
 - If $b=1$, send $\sigma \circ \varphi$ (map from G' to H)

- Check σ or ($\sigma \circ \varphi$)
Why does this work?

- **If** $G \cong G'$
 - Alice knows φ demonstrating $G \cong G'$
 - Since Alice chose σ, it is no problem to compute $H=\sigma \circ \varphi \circ G'$ and to output σ or $\sigma \circ \varphi$

- **If** $G \not\cong G'$
 - $H \cong G$ or $H \cong G'$ (or neither, but not both)
 - With probability $\frac{1}{2}$ Alice cannot demonstrate an isomorphism
Why zero knowledge?

• Bob can’t figure out \(\varphi \) from \(\sigma \) or \(\sigma \circ \varphi \)

• But could figure out \(\varphi \) from \(\sigma \) and \(\sigma \circ \varphi \)
 – So can’t repeat \(k \) times?
 – Must pick new \(\sigma \) each time!
Note: For proving graph isomorphism

- Verifier poly time
- Prover all powerful?
 - Here, Prover only needs to know the correspondence!!!
Which theorems have interactive zero knowledge proofs?

• If one-way functions exist then there exists a zero knowledge interactive proof for any IP problem
Why interactive proofs, why zero-knowledge?????

• A philosophical reason:
 – Can efficiently prove statements that are not efficiently provable with classical proofs

• A practical reason:
 – Passwords and identification
 • prove that “I am Ronitt Rubinfeld” so that no eavesdropper can mimic me later
 – Secure protocols
 • prove that I am behaving honestly
True zero-knowledge:

• Quote from a colleague in 1988:
 “I explained it [zero-knowledge] to my kids, and they understood!
 – they know that they didn’t learn anything”
6.046: some final words

• Let’s hope it wasn’t zero-knowledge!
 – nor zero-fun!

• Take more theory classes!
 – Lots of good choices – complexity, crypto, all kinds of algorithms...

• GOOD LUCK ON THE EXAM!