def P

decision problem Π solvable in "poly time" ($\Pi \in P$) if

\exists poly time algorithm $V(.)$ such that

\forall inputs x

$\Pi(x) = \text{YES}$ iff $V(x) = \text{TRUE}$

def NP

decision problem Π solvable in "non-deterministic poly-time"

($\Pi \in NP$) if

\exists poly time algorithm $V(.)$

$s.t.$ \forall inputs x

$\Pi(x) = \text{YES}$ iff $\exists y$ of size poly($|x|$) s.t.

$V(x, y) = \text{TRUE}$

\[\text{proof/certificate/witness to } x \in L(\Pi) \]

\[\text{verification algorithm} \]

Remark:

$\Pi(x) = \text{NO}$ iff $\forall y$ $V(x, y) = \text{FALSE}$
Polynomial Time Reductions

A, B decision problems

A is poly time reducible to B (denoted $A \leq B$)

if \exists poly time algorithm R such that

- R transforms input x for problem A into $R(x)$ for problem B

- x is yes-input for A iff $R(x)$ is yes-input for B

A instances

\[\begin{array}{cc}
\text{Yes instances of A} & \text{No instances of A}
\end{array} \]

B instances

\[\begin{array}{cc}
\text{No instances of B} & \text{Yes instances of B}
\end{array} \]
Why is this a good definition of $A \leq B$?

Claim if \(\exists \) p-time algorithm for B
then \(\exists \) p-time algorithm for A

\[
\begin{align*}
X & \xrightarrow{\text{reduction } R} R(x) \\
& \rightarrow \text{Algorithm for } B \\
& \rightarrow \text{Yes/No}
\end{align*}
\]

Algorithm for A

A’s runtime is \(\{\text{runtime on } x\} + \{\text{runtime on } R(x)\} \leq p(|x|) \leq \text{poly } (|x|) \text{ time} \)

Two potential uses:
1) if have algorithm for B, this gives algorithm for A
2) if A is hard, then B must be hard
 \[\therefore B \text{ is at least as hard as } A \]
NP-Completeness

\[\text{def } D \text{ is NP-Complete if } \]

\[\cdot D \in \text{NP} \]

\[\cdot \forall A \in \text{NP}, A \leq D \]

\[\text{we say } D \text{ is NP-hard} \]

Question: How can you show anything is NPC?

must show all decision problems in NP reduce to it

A first step:

Thm [Cook-Levin] 1971

\[\text{c-SAT is NP-complete} \]

\[\text{SAT} \]

\[\cdot \text{many others follow} \]

\[\text{Karp 1972} \]
Once you know one...

reductions are transitive!

\[\text{Thm} \quad D, C \text{ decision problems} \]

\[\text{if} \quad D \text{ NP-hard} \]

\[D \leq C \]

\[\text{then} \quad C \text{ is NP-hard} \]

\[\text{Pf} \quad \forall A \in \text{NP}, \quad A \leq D \quad \text{under} \quad R_1 \]

\[\text{but} \quad D \leq C \quad \text{under} \quad R_2 \]

\[x \xrightarrow{R_1} R_2(R_1(x)) \xrightarrow{R_2(R_1(x)) \in C} \text{Algorithm for } C \]

\[\text{Algorithm for } A \]

\[\text{Yes/No} \]

\[x \in A \iff (R_1(x) \in D) \iff R_2(R_1(x)) \in C \]

\[R_2 \circ R_1 \text{ is ptime since polynomials compose} \]

Make sure you understand:

- why this reduction has correct behavior (in/out of language)?
- why is it ptime?
To show \(C \) is \(NP \)-complete

1) show \(C \in NP \)

2) show some \(NP \)-complete problem reduces to \(C \)

\[\{ \text{2 step process} \} \]