Lecture 18:

One more reduction

Approximation Algorithms
Exact Cover

Input
Finite set \(X \), \(|X| = m \)
Subsets \(S_1, \ldots, S_n \) \(\subseteq \) each \(S_i \subseteq X \)

Question
is there \(S' \subseteq S \) such that
each elt of \(X \) is in exactly one \(S_i \in S' \)?

e.g.
\(X = \{0, 1, 2, 3\} \)

\(S_1' = \{1, 2, 3\}, \{2, 3\}, \{1, 3\}, \{0, 2, 3\} \) \(\text{NO} \)

\(S_2' = \{1, 2, 3\}, \{2, 3\}, \{1, 3\}, \{0, 3\} \) \(\text{YES} \)
Subset Sum

Input \(w_1, \ldots, w_n \) \(\geq \) integers \(B \)

Question is there \(S \subseteq \{1, \ldots, n\} \)
\[\text{s.t. } \sum_{i \in S} w_i = B \] ?

e.g. \(1, 5, 9, 3, 27 \)
\(B = 31 \)
\(S = \{1, 4, 5\} \) \(\text{i.e., } 1 + 4 + 27 = 31 \)

Exact Cover \(\leq \) Subset Sum:

Diagram:

\[S_1, \ldots, S_m \]
\[R \]
\[\begin{array}{c}
\frac{w_1 \ldots w_n}{B} \\
\text{Subset} \\
\text{Sum}
\end{array} \]

pick a large integer \(b > n \) \(\text{w.l.o.g. assume these are ints} \)

For each \(S_i \),

\[w_i = \sum_{x \in S_i} p^x \]

\[B = \sum_{x=0}^{n-1} p^x = \frac{p^n - 1}{p - 1} \]

\[\text{represent } S_i \text{ in p-ary notation} \]

Note: The diagram and additional text are hand-drawn and may not be perfectly clear. The objective is to convey the concepts of Subset Sum and Exact Cover within a mathematical context.
e.g. \(X = \{0,1,2,3\} \)

\[
B \geq 1000^0 + 1000^1 + 1000^2 + 1000^3 = \sum B
\]

\[
= 1,001,001,001
\]

\[
S_1 = \{1,2,3\} \Rightarrow \quad 1000^1 + 1000^2 + 1000^3 = \sum_{S_1} = W_1
\]

\[
= 1,001,001,000
\]

\[
S_2 = \{2,3\} \Rightarrow \quad 1000^1 = \sum_{S_2} = W_2
\]

\[
= 1,001,000,000
\]

\[
S_3 = \{1,3\} \Rightarrow \quad 1000^0 = \sum_{S_3} = W_3
\]

\[
= 1,000
\]

\[
S_4 = \{0,3\} \Rightarrow \quad 1000^0 = \sum_{S_4} = W_4
\]

\[
= 1
\]

Note: \(W_1 + W_3 = 2 \cdot 1000^1 + 1000^2 + 1000^3 \)

Since \(S_1 \cap S_3 \neq \emptyset \)

Fact: Adding \(W_i \)'s corresponds to "union" of \(S_i \)'s

Coefficients of sums of \(W_i \)'s will remain 0/1 exactly when corresponding \(S_i \)'s are non-intersecting

\(p \) large enough so that no carries

\(\Rightarrow \) coeff of all \(p \times \) terms are 1 only when \(S_i \)'s cover \(X \)

Claim: There is exact cover of \(X \) by \(S \)

iff

\[
\text{There is } S \subseteq S \text{ s.t. } \sum_{i \in S} W_i = B
\]

Also note: Reduction is poly time!
Lecture 18:

Approximation Algorithms

We saw a large class of problems for which we know no efficient way of solving them. What can we do? Exponential time algorithms, heuristics...

Find a "pretty good" solution instead of the "best" solution

Specify Optimization problem:
- Specify set of valid outputs (solutions) for each input
- Cost function $c(y)$ for each output
- Minimize or maximize?

Optimal Algorithm:

\forall inputs x, outputs OPT s.t. $c(OPT) = \min \{ c(x) : \text{all valid outputs} \}$
α-approximation algorithm: \((\alpha > 1)\) can depend on \(n\)

\[
\forall \text{ inputs, outputs APX st.} \\
\frac{C(\text{APX})}{C(\text{OPT})} \leq \alpha \\
\frac{C(\text{OPT})}{C(\text{APX})} \leq \alpha
\]

(minimization)

(maximization)

Strange thing:

Some NP-complete hard to approx, others easy

- e.g. Clique \(\alpha = \frac{n}{\log n}\) but not \(\alpha = n^e\) for \(0 < e < 1\)
- Vertex Cover \(\alpha = 2\)
- Set cover \(\alpha = \ln n\) but not better
Max-clique

Input: \(G, k \)

Problem: Find maximum size \(C \subseteq V \) s.t. \(C \) is a clique.

Recall: Decision problem is \(NP \)-complete.

Approximating Max Clique:

- \(\alpha = n \) is trivial.

A better algorithm:

- Divide vertices into \(K = O(\frac{n}{\log n}) \) blocks \(B_1, \ldots, B_k \) each of \(O(\log n) \) nodes.
- For each block, check all possible subsets of nodes to see if it is a clique.
- Output largest found clique.

Complexity: \(O(\frac{n}{\log n} \cdot n \cdot \log^2 n) = O(n^2 \log n) \)

- \#blocks
- \#subsets in each block
- Note each subset is of size \(O(\log n) \)
- \(\uparrow \) time to check if clique
Approximation Ratio:

\[C^* \text{ is largest clique} \]

pigeon hole principle \(\Rightarrow \) \(\exists \) block \(B \) with \(n \leq \frac{|C^*|}{K} \) nodes of \(C^* \)

when algorithm considers \(B \), it will find

clique of size \(\frac{|C^*|}{K} \)

\[\therefore \text{approximation ratio } = \frac{|C^*|}{\frac{|C^*|}{K}} = K = O(n/\log n) \]

Can we do better?

Then \(\text{NP-hard to approx clique to w/in } \alpha = n^\varepsilon \)

for any \(0 < \varepsilon < 1 \)

\(\Rightarrow \) hardness of \(\text{NP} \)-approximation algorithm
Set Cover

Input
- set V of size m
- family F of n subsets of U
 - i.e. $F = \mathcal{F}_1 \ldots \mathcal{F}_n$

Problem
- find min size $C \subseteq F$ which covers U
 - i.e. $U = \bigcup_{i=1}^{\mathcal{F}_i}$

Example

NP-hard!
Approximating Set Cover: (Greedy)

Initialize \(C = \emptyset \)
\[W = U \]
While \(W \neq \emptyset \) do
 pick set \(S \) maximizing \(|S \cap W| \)
 \[C = C \cup S \]
 \[W = W - S \]
Return \(C \)

Approximation Ratio:
Thm. algorithm gives \(O(\ln m) \)-approximation

Proof.
Bound # rounds "while"-loop \(\Rightarrow \) bound size of \(C \)

\{ Compare to Optimal cover, but we don't know it! \}

Assume size of Opt cover = \(k \), we don't even know this!

Easy Fact: at any iteration, some set in Opt cover will cover at least \(\frac{1}{k} \) fraction of \(W \)

Why? Opt cover has size \(\leq k \) \(\Rightarrow \) covers \(W \leq U \)

Some set has to cover \(\geq \frac{|W|}{k} \) elts

Fact implies after \(i \) rounds of "while loop"

at most \(|W| \cdot \left(1 - \frac{1}{k}\right)^i \) points left.

+ After \(T = O(K \ln |U|) \) rounds, \(\leq |W| \cdot \left(1 - \frac{1}{k}\right)^{ck \ln |U|} \leq 1 \) points left, so done.