Linear Programming

- Optimization over $x=(x_1,\ldots,x_n)$
- Solve:

 maximize $\sum_j x_j c_j$
 subject to $\sum_j x_j a_{ij} \leq b_i$ for $i=1\ldots m$
 and $x_j \geq 0$

- Today: algorithms for solving LP
 - LP recap
 - Randomized incremental algorithm
 - Overview of other algorithms
Linear Programming in 2D

- Variables: \((x_1, x_2)\)
- Constraints: \(a_{i1}x_1 + a_{i2}x_2 \leq b_i\)
- Opt. direction: \((c_1, c_2)\)
- Opt. solution?
- Must lie on the boundary of the feasible region
 - Vertex optimum
 - Edge optimum (next slide)
- Other cases?
Edge optimum
An Infeasible Linear Program
An Unbounded LP
Types of LPs

• Generic case: vertex optimum
 – Want to find it

• “Pathological” cases:
 – Optimal edge
 – Unbounded LP
 – Infeasible

• In this lecture, we assume vertex optimum
How can we efficiently solve the LP?
Incremental algorithm
Adding a New Constraint
Adding a New Constraint
Adding a New Constraint
Adding a New Constraint
Algorithm

• Choose two constraints and initialize the solution

• For each new constraint:
 – If the current solution is not feasible, find optimum on new constraint (line)

• Analysis ?
Initialization

- Choose two constraints and initialize the solution
 - A simple hack: impose additional "box constraint" $x \in [-M,M]^2$ for M “large enough”
 (possible to make it formal, but here we leave it as is)
 - Then one can just take a corner as the initial solution
 - $O(1)$ time
- If the current solution is not feasible, find optimum on new constraint
 - How much time does this take?
Analysis

• If we encounter the constraints in the bottom-up order, we need to update the solution every time
 – Time $= \Theta(\sum i_i) = \Theta(m^2)$
• If we encounter them in the top-down order, we never need to update the solution
 – Time $= \Theta(m)$
• How to ensure “good” order?
• Consider the constraints in random random order!
 – Each permutation equally likely
Expected time spent updating

- Let T_i be the time spent at time i
 - If we need an update, time $= O(i)$
 - If no need to update, time $= O(1)$
- We have

\[
E[\sum_i T_i] \\
= \sum_i E[T_i] \\
= O(m) + \sum_i P(\text{update at round } i)O(i)
\]
Probability of update at round i

- Consider the set of the first i constraints in the random order (excluding the initial box constraints)
 - Those constraints still arrive in a random order
 - Each permutation of i constraints equally likely
- Consider the solution v for these i constraints (defined by two constraints)
- Update occurs in the ith step only if the ith constraint is one of the two defining constraints
- The probability of that is at most $\frac{2}{i}$
Expected Run-Time Analysis

- Expected time spent updating:

\[\sum_i O\left(\frac{2}{i}O(i) + O(m)\right) = O(m) \]

- Linear time (for \(n=2 \))
- What about \(n>2 \) ?
What about dimension > 2?

- Incrementally add new constraints
- Probability of update: \(n/i \)
- On update: solve \(n-1 \) dimensional LP

\[
T(m,n) \leq O(mn) \sum_{i=1}^{m} \frac{n}{i} T(i-1,n-1) \leq O(n!m)
\]
Other algorithms

• Weakly polynomial-time algorithms:
 – Ellipsoid algorithm
 – Interior point algorithm
 – …

• Assume coefficients are integers of absolute value < L

• Running time polynomial in m, n and log L

• Reason: algorithms are *iterative*
Ellipsoid algorithm

- Solves feasibility, i.e., whether there exists x such that $Ax \leq b$
 - Add $cx \geq T$
 - Binary search on T
- Find an initial ellipsoid that contains the feasible region
- Iterate to find smaller and smaller ellipsoids
$x(0)$

Credit: Steven Boyd, via Wikipedia
Conclusions

• Algorithms for LP
 – Simplex, incremental
 – Weakly polynomial

• Open problem: strongly polynomial algorithm?