Lecture 22: Sub-linear Time Algorithms
Today’s goal

• Motivation and models
• Classical approximation problems
 – Diameter of a point set
• Property testing: approximation for decision problems
 – “Sortedness” of a list
 – Connectedness of a graph
How can we understand?
Vast data

• Impossible to access all of it

• Potentially accessible data is too enormous to be viewed by a single individual

• Once accessed, data can change
Connected world phenomenon

- each “node” is a person
- “edge” between people that know each other
- Is the underlying graph connected?
Does earth have the connected world property?

• How can we know?
 – data collection problem is immense
 – unknown groups of people found on earth
 – births/deaths
The Gold Standard in 6.046

- Linear time algorithms!
- Are they adequate?
What can we hope to do without viewing most of the data?

• Can’t answer “for all” or “exactly” type statements:
 – Exactly how many individuals on earth are left-handed?
 – Are all individuals connected?

• Maybe can answer?
 – approximately how many individuals on earth are left-handed?
 – is there a large group of connected individuals?
What can we hope to do without viewing most of the data?

• Change our goals?
 – for most interesting problems: algorithm must give approximate answer

• we know we can answer some questions...
 – e.g., sampling to approximate average, median values
What types of approximation?

• “Classical” approximation for optimization problems: output is number that is close to value of the optimal solution for given input. (not enough time to construct a solution)

• Property testing for decision problems: output is correct answer for given input, or at least for some other input “close” to it.
I. Classical Approximation Problems
First:

• A very simple example –
 – Deterministic
 – Approximate answer
 – And (of course).... Sub-linear time!
Approximate the diameter of a point set

- Given: \(m \) points, described by a distance matrix \(D \), s.t.
 - \(D_{ij} \) is the distance from \(i \) to \(j \).
 - \(D \) satisfies triangle inequality and symmetry.
 (note: input size \(n = m^2 \))
- Let \(i, j \) be indices that maximize \(D_{ij} \) then \(D_{ij} \) is the diameter.
- Output: \(k, l \) such that \(D_{kl} \geq D_{ij}/2 \)
Algorithm

- Algorithm:
 - Pick k arbitrarily
 - Pick l to maximize D_{kl}
 - Output D_{kl}

- Why does it work?

 \[
 D_{ij} \leq D_{ik} + D_{kj} \quad \text{(triangle inequality)}
 \]

 \[
 \leq D_{kl} + D_{kl} \quad \text{(choice of l + symmetry of D)}
 \]

 \[
 \leq 2D_{kl}
 \]

- Running time? $O(m) = O(n^{1/2})$
II. Property testing
Main Goal:

- Quickly distinguish inputs that have specific property from those that are far from having the property

Benefits:
- Natural question
- Just as good when data constantly changing
- Fast sanity check to rule out very "bad" inputs (i.e., restaurant bills) or to decide when expensive processing is worthwhile
Property Testing

• Properties of any object, e.g.,
 – Functions
 – Graphs
 – Strings
 – Matrices
 – Codewords

• Model must specify
 – representation of object and allowable queries
 – notion of close/far, e.g.,
 • number of bits/words that need to be changed
 • edit distance
A simple property tester
Sortedness of a sequence

• Given: list \(y_1 y_2 \ldots y_n\)
• Question: is the list sorted?

• Clearly requires \(n\) steps – must look at each \(y_i\)
Sortedness of a sequence

- Given: list \(y_1 y_2 \ldots y_n \)

- Question: can we quickly test if the list close to sorted?
What do we mean by ``quick’’?

• query complexity measured in terms of list size \(n \)

• Our goal (if possible):
 – Very small compared to \(n \), will go for \(\text{clog } n \)
What do we mean by “close”?

Definition: a list of size n is ε-close to sorted if can delete at most εn values to make it sorted. Otherwise, ε-far.

(ε is given as input, e.g., $\varepsilon=1/10$)

Sorted: 1 2 4 5 7 11 14 19 20 21 23 38 39 45
Close: 1 4 2 5 7 11 14 19 20 39 23 21 38 45
 1 4 5 7 11 14 19 20 23 38 45
Far: 45 39 23 1 38 4 5 21 20 19 2 7 11 14
 1 4 5 7 11 14
Requirements for algorithm:

- Pass sorted lists
- Fail lists that are ϵ-far.
 - Equivalently: if list likely to pass test, can change at most ϵ fraction of list to make it sorted

 Probability of success $> \frac{3}{4}$

 (can boost it arbitrarily high by repeating several times and outputting “fail” if ever see a “fail”, “pass” otherwise)

- Can test in $O(1/\epsilon \log n)$ time

 (and can’t do any better!)
An attempt:

• Proposed algorithm:
 – Pick random i and test that $y_i \leq y_{i+1}$

• Bad input type:
 – $1,2,3,4,5,\ldots, n/4$, $1,2,\ldots, n/4$, $1,2,\ldots,n/4$, $1,2,\ldots,n/4$
 – Difficult for this algorithm to find “breakpoint”
 – But other tests work well…
A second attempt:

- Proposed algorithm:
 - Pick random $i<j$ and test that $y_i \leq y_j$

- Bad input type:
 - $n/4$ groups of 4 decreasing elements
 - $4, 3, 2, 1, 8, 7, 6, 5, 12, 11, 10, 9..., 4k, 4k-1, 4k-2, 4k-3,...$
 - Largest monotone sequence is $n/4$
 - must pick i,j in same group to see problem
 - need $\Omega(n^{1/2})$ samples
A minor simplification:

• Assume list is distinct (i.e. \(x_i \neq x_j \))

• Claim: this is not really easier
 – Why?
 Can “virtually” append \(i \) to each \(x_i \)
 \(x_1, x_2, \ldots, x_n \) \(\rightarrow \) \((x_1,1), (x_2,2), \ldots, (x_n,n)\)
 e.g., \(1,1,2,6,6 \) \(\rightarrow \) \((1,1),(1,2),(2,3),(6,4),(6,5)\)
 Breaks ties without changing order
A test that works

• The test:

Test $O(1/\varepsilon)$ times:
 • Pick random i
 • Look at value of y_i
 • Do binary search for y_i
 • Does the binary search find any inconsistencies? If yes, FAIL
 • Do we end up at location i? If not FAIL
 – Pass if never failed

• Running time: $O(\varepsilon^{-1} \log n)$ time
• Why does this work?
Behavior of the test:

• Define index i to be good if binary search for y_i successful

• $O(1/\varepsilon \log n)$ time test (restated):
 – pick $O(1/\varepsilon)$ i’s and pass if they are all good

• Correctness:
 – If list is sorted, then all i’s are good (uses distinctness)
 • So test always passes
 – If list likely to pass test,
 • Then at least $(1-\varepsilon)n$ i’s are good.
 • Main observation: good elements form increasing sequence
 – Proof: for $i<j$ both good need to show $y_i < y_j$
 • let $k =$ least common ancestor of i,j
 • Search for i went left of k and search for j went right of k $\rightarrow$$y_i < y_k < y_j$
 • Thus list is ε-close to monotone (delete $< \varepsilon n$ bad elements)
Testing connectedness of a graph

• Given graph G
 – n vertices
 – Max degree d
 – Adjacency list representation

• Is G connected?
Connected world phenomenon

• Is the underlying graph close to connected?
Close to connected

• Def: G is ϵ—*close* to connected if can add $< \epsilon dn$ edges and transform it to connected
 – Today: ok to violate max deg d requirement
Property tester:

• Input: ϵ and G

• Output:
 – If G connected, output “PASS”
 – If G not ϵ-close to connected, output “FAIL” with probability $\geq 3/4$

 – (note: if G not connected, but is close, then ok to output either “PASS” or “FAIL”)
Idea:

• If G far from connected, lots of nodes must be in small components!
• More specifically...
 – Will show that if G far from connected
 – Then must have many connected components
 – So many components must be small
 – And there must be many nodes in small components
Algorithm:

• Do $O\left(\frac{1}{\epsilon d}\right)$ times:
 – Pick random node s, and run BFS from s until:
 • $\geq \frac{2}{\epsilon d}$ distinct nodes seen
 • OR see that s is component of size $< \frac{2}{\epsilon d}$ nodes, in which case output “FAIL” and halt

• If reach this point, output “PASS”

Runtime: $O\left(\frac{1}{\epsilon d}\right)$ loops, each does $O\left(\frac{1}{\epsilon d}\right)$ steps of BFS, using $O(d)$ time per step – total is $O\left(\frac{1}{\epsilon^2 d}\right)$
Behavior

- Lemma 1: If $G \in\epsilon$-far from connected, then has $\geq \epsilon dn$ components.
- Lemma 2: If $\geq \epsilon dn$ components then $\geq \epsilon dn/2$ components of size $< \frac{2}{\epsilon d}$.
- Observation: If $\geq \epsilon dn/2$ components of size $< \frac{2}{\epsilon d}$ then $\geq \epsilon dn/2$ nodes in components of size $< \frac{2}{\epsilon d}$.

These cause tester to FAIL!
Behavior

• Putting it together: If G ϵ-far from connected, then $\geq \epsilon d / 2$ fraction of nodes cause algorithm to fail!

 – So $\text{Prob}[\text{tester fails in one of } \frac{c}{\epsilon d} \text{ loops}]$ is

$$\geq 1 - \left(1 - \frac{\epsilon d}{2}\right)^{\frac{2c}{2\epsilon d}} \geq 1 - e^{\frac{c}{2}} \geq \frac{3}{4} \text{ (for big enough } c)$$
Lemma 1

If $G \varepsilon$-far from connected, then has $\geq \varepsilon dn$ components

Proof: if $<\varepsilon dn$ components, can add $<\varepsilon dn$ edges to connect
Lemma 2

If $\geq \epsilon dn$ components then $\geq \epsilon dn/2$ components of size $< \frac{2}{\epsilon d}$

(see notes for proof)
Observation:

If $\geq \epsilon dn/2$ components of size $< \frac{2}{\epsilon d}$ then $\geq \epsilon dn/2$ nodes in components of size $< \frac{2}{\epsilon d}$

Why? Each small component has at least one node.