Lecture 07
Hidden Markov Models
Part II

Module II: Modeling genes and gene expression

• Computational Foundations
 – Hidden Markov Models (HMMs): Central tool in CS
 – Decoding, evaluation, parsing, likelihood, scoring
 – Unsupervised Learning: Expectation Maximization
 – Supervised learning: generative/discriminative models

• Biological frontiers:
 – PS2: Modeling conservation, GC content, CpG islands
 – L6/L7: Genome annotation and parsing
 – L8: Gene expression analysis: cluster genes/conditions
 – L9: Regulatory motif discovery: EM, gibbs sampling, info

Goals for today: HMMs, part II

• Review: Three algorithms from last time
 – Markov Chains and Hidden Markov Models
 – Increasing the ‘state’ space / adding memory
 – Calculating likelihoods $P(x, \pi)$
 – Viterbi algorithm: Find $\pi^* = \arg\max_\pi P(x, \pi)$

• Counting over all paths
 – Forward algorithm: Find $P(x)$, over all paths
 – Model comparison: ex: “CpGs” vs. “Gs and Cs”

• Posterior decoding: Another way of ‘parsing’
 – Find most likely state k_i, overall all possible paths

• Learning (ML training, Baum-Welch, Viterbi training)
 – Supervised: Find $e_i(.)$ and a_{ij} given labeled sequence
 – Unsupervised: given only $x \rightarrow$ annotation + params

Markov Chains & Hidden Markov Models

• Markov Chain
 – Q: states
 – p: initial state probabilities
 – A: transition probabilities

• HMM
 – Q: states
 – V: observations
 – p: initial state probabilities
 – A: transition probabilities
 – E: emission probabilities

HMM nomenclature for this course

Transitions: $a_{jk}=P(\pi_i=l|\pi_{i-1}=k)$
Transition probability from state k to state l

Emissions: $e_k(x_i)=P(x_i|\pi_i=k)$
Emission probability of symbol x_i from state k

• Vector $x =$ Sequence of observations
• Vector $\pi =$ Hidden path (sequence of hidden states)
• Transition matrix $A=a_{jk}$=probability of $k \rightarrow l$ state transition
• Emission vector $E=e_k(x_i)$ = prob. of observing x_i from state k
• Bayes’ rule: Use $P(x_i|\pi_i=k)$ to estimate $P(\pi_i=k|x)$
1. Scoring probability of a path + sequence

Multiply emissions, transitions

2. Viterbi decoding

$\pi^* = \text{argmax}_\pi P(x, \pi)$

Most likely path

Path containing the most likely state at any time point.

3. Posterior decoding

$\pi^* = \{ \pi_i | \pi_i = \text{argmax}_k \sum P(\pi_i = k | x) \}$

Path containing the most likely state at any time point.

4. Supervised learning, given Λ

$\Lambda^* = \text{argmax}_\Lambda P(x, \pi | \Lambda)$

5. Unsupervised learning.

$\Lambda^* = \text{argmax}_\Lambda \sum P(x, \pi | \Lambda)$

6. Viterbi training, best path

Baum-Welch training, over all paths

Example: One particular P vs. B assignment

$P = P(G | B)P(B | R_0)P(C | B)P(R_0 | R)P(A | B)P(P | R) \ldots P(C | R)$

$= (0.85)^3 \times (0.25)^2 \times (0.75)^2 \times (0.42)^2 \times (0.30) \times 0.15$

$= 6.7 \times 10^{-5}$
Finding the most likely path

- Find path π^* that maximizes total joint probability $P(x, \pi)$
- $P(x, \pi) = a_{0\pi_1} \prod_{i=1}^n e_{\pi_i}(x_i) \times a_{\pi_i\pi_{i+1}}$

Viterbi algorithm

1. Define $V_k(i) = \text{Probability of the most likely path through state } \pi_i = k$
2. Compute $V_k(i+1)$ recursively, as a function of $\max_{k'} V_{k'}(i)$

- Assume we know V_j for the previous time step $(i-1)$
- Calculate $V_k(i) = e_k(x_i) \times \max_j (V_j(i-1) \times a_{jk})$ for all possible previous states j

The Viterbi Algorithm

<table>
<thead>
<tr>
<th>State 1</th>
<th>2</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
</tr>
</tbody>
</table>

Input: $x = x_1 \ldots x_N$

- **Initialization:** $V_{k}(0) = 1$, $V_j(0) = 0$, for all $k > 0$
- **Iteration:** $V_k(i) = a_k(x_i) \times \max_{j} a_{jk} V_{j}(i-1)$
- **Termination:** $P(x, \pi^*) = \max_k V_k(N)$

Scoring

- 1. Scoring x, one path
- 2. Scoring x, all paths

- **Decoding**
- 3. Viterbi decoding
- 4. Posterior decoding

- **Learning**
- 5. Supervised learning, given Λ^*
- 6. Unsupervised learning

2. Model evaluation:

Total $P(x|M)$, summed over all paths

- **Forward algorithm**

Simple: Given the model, generate some sequence x

- Given a HMM, we can generate a sequence of length n as follows:
 1. Start at state π_1 according to prob $a_{0\pi_1}$
 2. Emit letter x_1 according to prob $e_{\pi_1}(x_1)$
 3. Go to state π_2 according to prob $a_{\pi_1\pi_2}$
 4. ... until emitting x_n

We have some sequence x that can be emitted by p. Can calculate its likelihood. However, in general, many different paths may emit the same sequence x. How do we find the total probability of generating a given x over any path?
Complex: Given x, was it generated by the model?

Given a sequence x,

1. What is the probability that x was generated by the model (using any path)?

 \[P(x) = \sum P(x, \pi) \]

 - Challenge: exponential number of paths
 - (cheap) alternative: Calculate probability over maximum (Viterbi) path \(\pi^* \)
 - (real) solution: Calculate sum iteratively using principles of dynamic programming

The Forward Algorithm – derivation

Define the forward probability:

\[f(i) = P(x_1, \ldots, x_i, \pi_i = l) \]

\[= \sum_{x_{i+1}} P(x_1, \ldots, x_i, x_{i+1}, \pi_{i+1} = l) \theta_l(x) \]

\[= \sum_{x_{i+1} \pi_{i+1}} P(x_1, \ldots, x_i, \pi_{i+1} = l) a_{kl} \theta_l(x) \]

\[= \theta_l(x) \sum_{x_{i+1}} f(i) a_{kl} \]

Calculate total probability \(\sum_{x} P(x, \pi) \) recursively

\[f(j) = \theta_j(x) \sum_{x_{j+1}} a_{jk} f(j+1) \]

- Assume we know \(f \) for the previous time step \((i-1) \)

- Calculate \(f(i) = \theta_i(x) \sum_{x_{i+1}} a_{ik} f(i+1) \)

The Forward Algorithm

Input: \(x = x_1 \ldots x_N \)

Initialization: \(f(0) = 1, f(i) = 0, \text{ for all } k > 0 \)

Iteration: \(f(i) = \theta_i(x) \sum_{x_{i+1}} a_{ik} f(i) \)

Termination: \(P(x, \pi^*) = \sum_k f(N) \)

In practice:

- Sum of log scores is difficult
- \(\exp(1+p+q) \) scaling of probabilities

Time: \(O(K^2N) \)

Space: \(O(K) \)

Application: Distinguishing between two models

- HMM1: Promoters = only Cs and Gs matter
- HMM2: Promoters = it’s actually CpGs that matter (*C*-phosphate-*G*, i.e. on the same strand!)

(increasing the state space)

In the human genome, CpG islands matter!

- Regions of regulatory importance in promoters of many genes
 - CpGs more important than simply the abundance of Cs and Gs
 - Provide evidence of methylation state!
- Methylation process in the human genome (form of silencing):
 - Methylation signature: high chance of methyl-C mutating to T in CpG
 - CpG dinucleotides are rare, throughout the genome
 - BUT methylation is suppressed for active promoters
 - CpG dinucleotides are much more frequent than elsewhere
 - Such regions are called CpG islands
 - A few hundred to a few thousand bases long
- Problems:
 - Given a short sequence, does it come from a CpG island or not?
 - How to find the CpG islands in a long sequence
 - How do we encode this in an hidden Markov model?
Increasing the state of the system (looking back)

- Markov Models are memory-less
 - In other words, all memory is encoded in the states
 - To remember additional information, augment state
- Our first HMM had minimal memory
 - State, emissions, only depend on current state
 - Current state only encoded one previous nucleotide
- How do you count di-nucleotide frequencies?
 - CpG islands: di-nucleotides
 - Codon triplets: tri-nucleotides
 - Di-codon frequencies: six nucleotides

Expanding the number of states

Training emission parameters for CpG+/CpG- states

Example 2: CpG islands: incorporating memory

Modeling CpG islands: incorporating memory

HMM for CpG islands

Why we need so many states...
In our simple GC-content example, we only had 2 states (+|-)
Why do we need 8 states here: 4 CpG+ / 4 CpG- ?

Encode ‘memory’ of previous state: nucleotide transitions

HMM for CpG islands

- Build a single model that combines two such Markov chains:
 - ‘+’ states: A, C, G, T
 - Emits symbols: A, C, G, T in CpG islands
 - ‘-’ states: A, C, G, T
 - Emits symbols: A, C, G, T in non-islands
- Emission probabilities distinct for the ‘+’ and the ‘-’ states
 - Infer most likely set of states, giving rise to observed emissions
 - ‘Paint’ the sequence with + and - states

One path

All paths

1. Scoring x, one path
 \[P(x, \pi) \]
 \[P(x) = \sum \pi \]

2. Scoring x, all paths
 \[P(x, \pi) \]
 \[P(x) = \sum \pi \]

3. Viterbi decoding
 \[\pi^* = \text{argmax}_{x} P(x, \pi) \]

4. Posterior decoding
 \[\pi^* = \left\{ \pi \mid \pi \text{argmax}_{\pi} \sum_{P(x, \pi)} \right\} \]

5. Supervised learning, given \(\pi \)
 \[\Lambda^* = \text{argmax}_{P(x, \pi)} \]

6. Unsupervised learning
 \[\Lambda^* = \text{argmax}_{\pi} \sum_{P(x, \pi)} \]

Viterbi training, best path
Baum-Welch training, over all paths

Learning

Scoring

Decoding

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>274</td>
<td>426</td>
<td>120</td>
</tr>
<tr>
<td>171</td>
<td>368</td>
<td>274</td>
<td>188</td>
</tr>
<tr>
<td>161</td>
<td>336</td>
<td>375</td>
<td>125</td>
</tr>
<tr>
<td>179</td>
<td>353</td>
<td>384</td>
<td>182</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>.300</td>
<td>.205</td>
<td>.285</td>
<td>.210</td>
</tr>
<tr>
<td>.322</td>
<td>.298</td>
<td>.278</td>
<td>.302</td>
</tr>
<tr>
<td>.344</td>
<td>.246</td>
<td>.290</td>
<td>.208</td>
</tr>
<tr>
<td>.177</td>
<td>.239</td>
<td>.252</td>
<td>.252</td>
</tr>
</tbody>
</table>
4. Decoding, all paths

Find the likelihood an emission \(x_i \) is generated by a state

Calculate most probable label at a single position

- Calculate most probable label, \(L^*_i \), at each position \(i \)
- Do this for all \(N \) positions gives us \(\{L^*_1, L^*_2, L^*_3, \ldots, L^*_N\} \)
- How much information have we observed? Three settings:
 - Observed nothing: Use prior information
 - Observed only character at position \(i \): Prior + emission probability
 - Observed entire sequence: Posterior decoding

Calculate \(P(\pi_i = C \mid x_i = G) \)

- With no knowledge (no characters)
 - Simply time spent in markov chain states
 - \(P(\pi = k) = \) most likely state (prior)
- With very little knowledge (just that character)
 - Time spent, adjusted for different emission probs.
 - Use Bayes rule to change inference directionality
 - \(P(\pi = k \mid x = G) = P(\pi = k) \cdot P(x = G \mid \pi) / P(x = G) \)
- With knowledge of entire sequence (all characters)
 - \(P(\pi = k \mid x = \text{AGCGCG...GATTACGTCGTA}) \)
 - Sum over all paths that emit ‘G’ at position 7
 \(\Rightarrow \) Posterior decoding

Motivation for the Backward Algorithm

We want to compute

\[P(\pi_i = k \mid x) \]

the probability distribution on the \(i \)-th position, given \(x \)

We start by computing

\[P(\pi_i = k \mid x) = P(\pi_i = k, x) = P(x_1, x_2, \ldots, x_i, \pi_i = k, x_{i+1}, \ldots, x_N) \]

\[= P(x_1, x_2, \ldots, x_i, \pi_i = k) \cdot P(x_{i+1}, \ldots, x_N \mid x_1, x_2, \ldots, x_i, \pi_i = k) \]

\[= \sum_{\pi_{i+1} \ldots \pi_N} P(x_1, x_2, \ldots, x_i, \pi_i = k, x_{i+1}, \ldots, x_N \mid \pi_{i+1} \ldots \pi_N) \cdot P(\pi_{i+1} \ldots \pi_N) \]

Define the backward probability:

\[b_k(i) = P(x_{i+1}, \ldots, x_N \mid \pi_i = k) \]

\[= \sum_{\pi_{i+1} \ldots \pi_N} P(x_1, x_2, \ldots, x_i, \pi_i = k, x_{i+1}, \ldots, x_N \mid \pi_{i+1} \ldots \pi_N) \]

\[= P(\pi_i = k, x) = \sum_{\pi_{i+1} \ldots \pi_N} P(x_1, x_2, \ldots, x_i, \pi_i = k, x_{i+1}, \ldots, x_N) \]

\[= \sum_{\pi_{i+1} \ldots \pi_N} P(x_{i+1}, x_{i+2}, \ldots, x_N \mid \pi_i = k, x_{i+1}, \ldots, x_N) \cdot P(\pi_{i+1} \ldots \pi_N) \]

\[= \sum_{\pi_{i+1} \ldots \pi_N} \begin{cases} a_{\pi_{i+1}} & \text{if } \pi_i = k \\ b_k(i) & \text{if } \pi_i = k \end{cases} \]

\[= \sum_{\pi_{i+1} \ldots \pi_N} \begin{cases} a_{\pi_{i+1}} & \text{if } \pi_i = k \\ b_k(i) & \text{if } \pi_i = k \end{cases} \]

\[= \sum_{\pi_{i+1} \ldots \pi_N} b_k(i+1) \]

The Backward Algorithm – derivation

Calculate total end probability recursively

- Assume we know \(b_k \) for the next time step \((i+1)\)

\[b_k(i) = \sum_{\pi_{i+1} \ldots \pi_N} \begin{cases} a_{\pi_{i+1}} & \text{if } \pi_i = k \\ b_k(i+1) & \text{if } \pi_i = k \end{cases} \]

\[= \sum_{\pi_{i+1} \ldots \pi_N} \begin{cases} a_{\pi_{i+1}} & \text{if } \pi_i = k \\ b_k(i+1) & \text{if } \pi_i = k \end{cases} \]
The Backward Algorithm

Input: \(x = x_1 \ldots x_N \)

Initialization:
\(b_k(N) = a_{k0} \text{ for all } k \)

Iteration:
\[
 b_k(i) = \sum_l e_l(x_{i+1}) a_{kl} b_l(i+1)
\]

Termination:
\[
 P(x) = \sum_l a_{0l} e_l(x_1) b_l(1)
\]

In practice:
- Sum of log scores is difficult
- \(\approx \text{exp}(1+p+q) \)
- Scaling of probabilities

Running time and space:
- Time: \(O(K^2N) \)
- Space: \(O(K) \)

Putting it all together: Posterior decoding

\[
 P(k) = P(\pi_i = k \mid x) = f_k(i) b_k(i) / P(x)
\]

- Probability that \(i \text{ th state is } k, \text{ given all emissions } x \)

- Posterior decoding
 - Define most likely state for every of sequence \(x \)
 - \(\pi^* = \text{argmax}_k P(\pi_i = k \mid x) \)
 - For classification, more informative than Viterbi path \(\pi^* \)
 - However, it may give an invalid sequence of states
- Not all \(j \rightarrow k \) transitions may be possible

Summary this far
- Generative model. Hidden states, observed emissions.
 - Generate a random sequence
 - Choose random transition, choose random emission (\#0)
 - Scoring the likelihood of a sequence
 - Calculate likelihood of annotated path and sequence
 - Multiply emission and transition probabilities (\#1)
 - Without specifying a path, total probability of generating \(x \)
 - \(P(x) = \sum_{\pi} P(x, \pi) \)
 - Decoding: Finding the most likely path, given a sequence
 - What is the most likely path generating entire sequence?
 - Viterbi algorithm (\#2)
 - What is the most probable state at each time step?
 - \#3 + backward algorithms
 - Next: Learning (\#5 and \#6)

Learning: How to train an HMM

Transition probabilities
- \(P(P_{i+1} \mid B_i) \) – the probability of entering a pathogenicity island from background DNA

Emission probabilities
- i.e. the nucleotide frequencies for background DNA and pathogenicity islands

One path
1. Scoring, one path
\[
 P(x, \pi) = \sum_{\pi} P(x, \pi)
\]

2. Scoring, all paths
\[
 P(x) = \sum_{\pi} P(x, \pi)
\]

3. Viterbi decoding
\[
 \pi^* = \text{argmax}_\pi P(x, \pi)
\]

4. Posterior decoding
\[
 \pi^* = \sum_{\pi} P(x, \pi) \; \text{over all paths}
\]

All paths
5. Supervised learning, given \(\pi^* \)
\[
 \Lambda^* = \text{argmax}_{\Lambda} P(x, \pi^* \mid \Lambda)
\]

6. Unsupervised learning
\[
 \Lambda^* = \text{argmax}_{\Lambda} \sum_{\pi} P(x, \pi \mid \Lambda)
\]

Two learning scenarios

Case 1. Estimation when the “right answer” is known

Examples:
- A genomic region \(x = x_1 \ldots x_{1,000,000} \) where we have good (experimental) annotations of the CpG islands

Case 2. Estimation when the “right answer” is unknown

Examples:
- The porcupine genome; we don’t know how frequent are the CpG islands there, neither do we know their composition

QUESTION: Update the parameters \(\theta \) of the model to maximize \(P(x \mid \theta) \)
Two types of learning: Supervised / Unsupervised

5. Supervised learning
infer model parameters given labeled training data
- GIVEN:
 • a HMM M, with unspecified transition/emission probs.
 • labeled sequence x,
- FIND:
 • parameters \(\theta = (E, A) \) that maximize \(P(x | \theta) \)
 \(\Rightarrow \)
 Simply count frequency of each emission and transition, as observed in the training data

6. Unsupervised learning
infer model parameters given unlabelled training data
- GIVEN:
 • a HMM M, with unspecified transition/emission probs.
 • unlabeled sequence x,
- FIND:
 • parameters \(\theta = (E, A) \) that maximize \(P(x | \theta) \)
 \(\Rightarrow \)
 Viterbi training:
 guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
 Baum-Welch training:
 guess parameters, sum over all paths (#4), update parameters (#5), iterate

Case 1. When the right answer is known

Given \(x = x_1 \ldots x_n \)
for which the true \(\pi = \pi_1 \ldots \pi_n \) is known,

Define:

\[
A_{kl} = \text{# times } k \rightarrow l \text{ transition occurs in } x
\]

\[
E_k(b) = \text{# times state } k \text{ in } \pi \text{ emits } b \text{ in } x
\]

We can show that the maximum likelihood parameters \(\theta \) are:

\[
a_{kl} = \frac{A_{kl}}{\sum_l A_{kl}} \quad e_k(b) = \frac{E_k(b)}{\sum_c E_k(c)}
\]

Learning From Labelled Data

Maximum Likelihood Estimation

If we have a sequence that has islands marked, we can simply count

![Diagram](image)

Pseudocounts

Solution for small training sets:

Add pseudocounts

\[
A_{kl} = \# \text{ times } k \rightarrow l \text{ transition occurs in } \pi \text{ } + f_{kl}
\]

\[
E_k(b) = \# \text{ times state } k \text{ in } \pi \text{ emits } b \text{ in } x \text{ } + f_k(b)
\]

\(f_{kl}, f_k(b) \) are pseudocounts representing our prior belief

Larger pseudocounts \(\Rightarrow \) Strong prior belief

Small pseudocounts \((c < 1)\): just to avoid 0 probabilities
Example: Training Markov Chains for CpG islands

- Training Set:
 - set of DNA sequences w/ known CpG islands
- Derive two Markov chain models:
 - ‘+’ model: from the CpG islands
 - ‘-’ model: from the remainder of sequence
- Transition probabilities for each model:

\[
\begin{align*}
\sum_{t' st'} a_{stc}^+ &= \text{the number of times letter } t \text{ followed letter } s \text{ inside the CpG islands} \\
\sum_{t' st'} a_{stc}^- &= \text{the number of times letter } t \text{ followed letter } s \text{ outside the CpG islands}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{cccc}
A & C & G & T \\
C & 0.180 & 0.274 & 0.426 & 0.120 \\
G & 0.079 & 0.355 & 0.384 & 0.182 \\
T & 0.171 & 0.368 & 0.274 & 0.188 \\
\end{array}
\end{align*}
\]

6: Unsupervised learning

Estimate model parameters based on unlabeled training data

Learning case 2. When the right answer is unknown

We don’t know the true \(A_{kl}, E_k(b) \)

Idea:
- We estimate our “best guess” on what \(A_{kl}, E_k(b) \) are (M step, maximum-likelihood estimation)
- We update the probabilistic parse of our sequence, based on these parameters (E step, expected probability of being in each state given parameters)
- We repeat

Two settings:
- Simple: Viterbi training (best guest = best path)
- Correct: Expectation maximization (all paths, weighted)
Simple case: Viterbi Training

Initialization:
Pick the best-guess for model parameters (or arbitrary)

Iteration:
1. Perform Viterbi, to find π^*
2. Calculate $A_{kl}, E_k(b)$ according to $\pi^* +$ pseudocounts
3. Calculate the new parameters $a_{kl}, e_k(b)$

Until convergence

Notes:
- Convergence to local maximum guaranteed. Why?
- Does not maximize $P(x | \theta)$
- In general, worse performance than Baum-Welch

Expectation Maximization (EM)

The basic idea is the same:
1. Use model to estimate missing data (E step)
2. Use estimate to update model (M step)
3. Repeat until convergence

EM is a general approach for learning models (ML estimation) when there is “missing data” Widely used in computational biology

Case 2. When the right answer is unknown

Starting with our best guess of a model M, parameters θ:

- Given $x = x_1 \ldots x_N$ for which the true $\pi = \pi_1 \ldots \pi_N$ is unknown,
- We can get to a provably more likely parameter set $\hat{\theta}$

Principle: Expectation Maximization

1. Estimate probabilistic parse based on parameters (E step)
2. Update parameters A_{kl}, E_k based on probabilistic parse (M step)
3. Repeat 1 & 2, until convergence

Estimating probabilistic parse given params (E step)

To estimate A_{kl}:

- At each position i:

 Find probability transition $k \rightarrow l$ is used:

 \[
 P(\pi_i = k, \pi_{i+1} = l | x) = \frac{1}{Q} \sum_{x_i} P(x, \pi_i = k, \pi_{i+1} = l | x) = P(x, \pi | \theta)
 \]

 \[
 Q = \sum_{x_i} P(x, \pi | \theta)
 \]

 where $Q = \sum_{x_i} P(x, \pi | \theta)$

- So:

 \[
 P(\pi_i = k, \pi_{i+1} = l | x, \theta) = \frac{P(x, \pi_i = k, \pi_{i+1} = l | x, \theta)}{Q(x)}
 \]

 (For one such transition, at time step $i \rightarrow i+1$)

Expectation Maximization (EM)

1. Initialize parameters randomly
2. E Step Estimate expected probability of hidden labels Q, given current (latest) parameters and observed (unchanging) sequence

\[
Q = P(Labels | S, params^{-1})
\]

3. M Step Choose new maximum likelihood parameters over probability distribution Q, given current probabilistic label assignments

\[
\hat{\theta} = \arg \max_{\theta} P(S | \theta)
\]

4. Iterate

P(\theta | S) guaranteed to increase each iteration

Decoding

Scoring

<table>
<thead>
<tr>
<th>One path</th>
<th>All paths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Scoring x, one path</td>
<td>2. Scoring x, all paths</td>
</tr>
<tr>
<td>$P(x, \pi)$</td>
<td>$P(x) = \sum P(x, \pi)$</td>
</tr>
<tr>
<td>Prob of a path, emissions</td>
<td>Prob of emissions, over all paths</td>
</tr>
</tbody>
</table>

- 3. Viterbi decoding
 - $\pi^* = \arg \max P(x, \pi)$
 - Most likely path

- 4. Posterior decoding
 - $\pi^* = \{ \pi_i | \pi_i = \arg \max_k \sum P(x | \pi_i = k) \}$
 - Path containing the most likely state at any time point.

Learning

5. Supervised learning, given π^*

6. Unsupervised learning

- $\Lambda^* = \arg \max_{\Lambda} P(x, \pi | \Lambda)$
- Viterbi training, best path
- Baum-Welch training, over all paths
New parameters given probabilistic parse (M step)

(Sum over all k→l transitions, at any time step i)

So,

\[A_{kl} = \sum_i \frac{P(\pi_i = k, \pi_{i+1} = l \mid x, \theta)}{P(x \mid \theta)} \]

Similarly,

\[E_k(b) = \frac{1}{P(x)} \sum_{\{i \mid x_i = b\}} f_k(i) b_k(i) \]

Dealing with multiple training sequences

(Sum over all training seqs, all k→l transitions, all time steps i)

If we have several training sequences, \(x_1, \ldots, x_M\), each of length \(N\),

\[A_{kl} = \sum_x \sum_i \frac{P(\pi_i = k, \pi_{i+1} = l \mid x, \theta)}{P(x \mid \theta)} \]

Similarly,

\[E_k(b) = \sum_x \frac{1}{P(x)} \sum_{\{i \mid x_i = b\}} f_k(i) b_k(i) \]

The Baum-Welch Algorithm

Initialization:
Pick the best-guess for model parameters
(or arbitrary)

Iteration:
1. Forward
2. Backward
3. \(\Rightarrow\) Calculate new log-likelihood \(P(x \mid \theta)\) (E step)
4. Calculate \(A_{kl}, E_k(b)\)
5. \(\Rightarrow\) Calculate new model parameters \(a_{kl}, e_k(b)\) (M step)

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until \(P(x \mid \theta)\) does not change much

The Baum-Welch Algorithm – comments

Time Complexity:

\# iterations \times O(K^2N)

- Guaranteed to increase the log likelihood of the model
 \[P(\theta \mid x) = \frac{P(x, \theta)}{P(x)} = \frac{P(x \mid \theta)}{(P(x) P(\theta))} \]
- Not guaranteed to find globally best parameters
 Converges to local optimum, depending on initial conditions
- Too many parameters / too large model: Overtraining

One path

<table>
<thead>
<tr>
<th>Scoring</th>
<th>All paths</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Scoring x, one path (P(x, \pi))</td>
<td>2. Scoring x, all paths (P(x) = \sum \pi \cdot P(x, \pi))</td>
</tr>
<tr>
<td>Prob of a path, emissions</td>
<td>Prob of emissions, over all paths</td>
</tr>
</tbody>
</table>

3. Viterbi decoding
\[\pi^* = \text{argmax}_\pi P(x, \pi) \]
Most likely path

4. Posterior decoding
\[\pi^* = \{ \pi \mid \pi = \text{argmax}_\pi \sum \pi \cdot P(\pi \mid x) \} \]
Path containing the most likely state at any time point.

5. Supervised learning, given \(\pi\)
\[\Lambda^* = \text{argmax}_\Lambda P(x, \pi \mid \Lambda) \]
6. Unsupervised learning
\[\Lambda^* = \text{argmax}_\Lambda \sum P(x, \pi \mid \Lambda) \]

Viterbi training, best path

Baum-Welch training, over all paths

What have we learned?

- Generative model. Hidden states, observed emissions.
 - Generate a random sequence
 - Choose random transition, choose random emission (#5)
- Scoring: Finding the likelihood of a given sequence
 - Calculate likelihood of annotated path and sequence
 - Multiply emission and transition probabilities (#1)
 - Without specifying a path, total probability of generating \(x\)
 - Sum probabilities over all paths
 - Forward algorithm (#3)
- Decoding: Finding the most likely path, given a sequence
 - What is the most likely path generating entire sequence?
 - Viterbi algorithm (#2)
 - What is the most probable state at each time step?
 - Forward + backward algorithms, posterior decoding (#4)
- Learning: Estimating HMM parameters from training data
 - When state sequence is known
 - Simply compute maximum likelihood \(\Lambda\) and \(E\) (#5a)
 - When state sequence is not known
 - Viterbi training: iterative estimation of best path / frequencies (#5b)
 - Baum-Welch: iterative estimation over all paths / frequencies (#6)
The main questions on HMMs

<table>
<thead>
<tr>
<th>SCORING</th>
<th>PARSING</th>
<th>LEARNING</th>
</tr>
</thead>
</table>
| 1. **Scoring x, one path**
 - GIVEN a HMM M, a path π, and a sequence x,
 - FIND: $\text{prob}(\pi, x | M)$
 - *Running the model*: simply multiply emission and transition probabilities
 - Application: "all promoter" vs. "all background" comparisons
| 2. **Scoring x, all paths**
 - GIVEN a HMM M, a sequence x,
 - FIND: $\text{total probability } \sum_{\pi} \text{prob}(\pi, x | M)$
 - *Forward algorithm*: sum score over all paths (same result as backward)
| 3. **Viterbi decoding**
 - GIVEN a HMM M, and a sequence x,
 - FIND: $\text{sequence } \pi^* \text{ of states that maximize } \text{prob}(x, \pi | M)$
 - *Viterbi algorithm*: dynamic programming, max score over all paths, trace pointers find path
| 4. **Posterior decoding**
 - GIVEN a HMM M, a sequence x,
 - FIND: $\text{total probability } \sum_{\pi} \text{prob}(\pi, x | M)$
 - *Posterior decoding*: run forward & backward algorithms to & from state π_k
| 5. **Supervised learning**
 - GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
 - FIND: parameters $\theta = (e_i, a_{ij})$ that maximize $P(x | \theta)$
 - Simply count frequency of each emission and transition observed in the training data
| 6. **Unsupervised learning**
 - GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
 - FIND: parameters $\theta = (e_i, a_{ij})$ that maximize $P(x | \theta)$
 - *Viterbi training*: guess parameters, find optimal Viterbi path (π^*), update parameters (θ), iterate
 - *Baum-Welch training*: guess parameters, sum over all emissions/transitions (θ), update (θ), iterate