String algorithms I & II
Prof. Manolis Kellis

Lecture 11

String algorithms

- Today: String matching I
 - The exact string matching problem
 - Naïve algorithm
 - Preprocessing the query:
 - Fundamental pre-processing
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore algorithm
 - Z algorithm algorithm
 - Semi-numerical string matching
 - Rabin-Karp algorithm
- Wednesday: String matching II
 - Finite state machines
 - Suffix-trees
 - Inexact matching

The exact matching problem

- Inputs:
 - a string \(P \), called the pattern
 - a longer string \(T \), called the text
- Output:
 - Find all occurrences, if any, of pattern \(P \) in text \(T \)
- Example
 \[
 P = \text{aba} \\
 T = \text{baabacabab}
 \]

Basic string definitions

- A string \(S \) – Ordered list of characters
 - Written contiguous from left to write
- A substring \(S[i..j] \) – all contiguous characters from \(i \) to \(j \)
 - Example: \(S[3..7] = \text{abaxa} \)
- A prefix is a substring starting at 1
- A suffix is a substring ending at \(|S| \)
- \(|S| \) denotes the number of characters in string \(S \)

The naïve string-matching algorithm

- NAÏVE STRING MATCHING
 1. \(n \leftarrow \text{length}[T] \)
 2. \(m \leftarrow \text{length}[P] \)
 3. for shift \(\in \{0 \ldots n\} \) do
 if \(P[1..m] == T[\text{shift}+1 \ldots \text{shift}+m] \)
 then print “Pattern occurs with shift” \(\text{shift} \)
 4. \(\text{Running time: } O(n) \) \(\text{O}(m) \)
- Where the test operation in line 4:
 - Tests each position in turn
 - If match, continue testing
 - Else: stop
- Running time – number of comparisons
 number of shifts (with one comparison each)
 + number of successful character comparisons

Comparisons made with naïve algorithm

- Worst case running time:
 - Test every position
 - \(P = \text{aaaa}, T = \text{aaaaaaaaaaaa} \)
- Best case running time:
 - Test only first position
 - \(P = \text{bbbb}, T = \text{aaaaaaaaaaaa} \)

Can we do better?
Key insight: make bigger shifts!

• If all characters in the pattern are the same:

```
<table>
<thead>
<tr>
<th>a a a a</th>
</tr>
</thead>
<tbody>
<tr>
<td>a a a a</td>
</tr>
<tr>
<td>a a a a</td>
</tr>
</tbody>
</table>
```

Information gathered at every comparison

Knowledge of the internal structure of P

Number of comparisons: O(n)

Key insight: make bigger shifts!

• If all characters in the pattern are different:

```
<table>
<thead>
<tr>
<th>a b c d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a b c d</td>
</tr>
<tr>
<td>a b c d</td>
</tr>
</tbody>
</table>
```

Number of comparisons:
- At most n matching comparisons
- At most n non-matching comparisons

⇒ Number of comparisons: O(n)

Key insight: make bigger shifts!

• Special case:
 - If all characters in the pattern are the same: O(n)
 - If all characters in the pattern are different: O(n)

• General case:
 - Learn internal redundancy structure of the pattern
 - Pattern pre-processing step

• Methods:
 - Fundamental pre-processing
 - Knuth-Morris-Pratt
 - Finite State Machine

Fundamental pre-processing

• Learning the redundancy structure of a string S

```
S = a a b c | a a | b x | a a a
Z = 0 1 0 0 3 1 0 2 2 1
```

```
Z-box = a a b c | a a | b x | a a a
```

```
r = a a b c | a a | b x | a a a
```

```
l = a a b c | a a | b x | a a a
```

```
Z1 Z2 Z3 … Zk-1 Zk
```

Computing Zk given Z1 … Zk-1

• Case 1: k is outside a Z-box: simply compute Zk

```
Can we compute Z, r, l in linear time O(|S|)?
```

• Case 2: k is inside a Z-box: Look up Zk

⇒ Case 2a: Zk < r-k
⇒ Case 2b: Zk >= r-k
Computing Z_k given $Z_1 \ldots Z_{k-1}$

Case 2a: $Z_k < r-k$

Case 2b: $Z_k \geq r-k$

Explicitly compare starting at $r+1$

Correctness of Z computation

Case 1: k is outside a Z-box: explicitly compute Z_k

Case 2a: Inside Z-box and $Z_k < r-k$: set $Z_k = Z_k$

Case 2b: Inside Z-box and $Z_k \geq r-k$: explicitly compute starting at $r+1$

What's so fundamental about Z?

- Learning the redundancy structure of a string S

- Z_i = fundamental property of internal redundancy structure

- Most pre-processings can be expressed in terms of Z
 - Length of the longest prefix starting/ending at position i
 - Length of the longest suffix starting/ending at position i

Putting it all together

- FUNDAMENTAL-PREPROCESSING(S):

  ```
  for k in 2..n:
    if k > r:
      $Z_k,l,r = \text{explicitly compare } S[1..] \text{ with } S[k..]$
    if k <= r:
      if $Z_k < (r-k)$:
        Set $Z_k = Z_k$
      else:
        Set $Z_k = \text{explicitly compare } S[r+1..] \text{ with } S[(r-k)+1..]$
        $l = k$
        $r = l + Z_k$
  ```

Running time of Z computation

Case 1: k is outside a Z-box: explicitly compute Z_k

Case 2a: Inside Z-box and $Z_k < r-k$: set $Z_k = Z_k$

Case 2b: Inside Z-box and $Z_k \geq r-k$: explicitly compute starting at $r+1$

Back to string matching

- Given the fundamental pre-processing of pattern P
 - Compare pattern P to text T
 - Shift P by larger intervals based on values of Z

- Three algorithms based on these ideas
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore algorithm
 - Z algorithm
Knuth-Morris-Pratt algorithm

- Pre-processing:
 - $S_p(P)$ = length of longest proper suffix of $P[1..i]$ that matches a prefix of P

- No other than the right-hand-side of the Z-boxes

Knuth-Morris-Pratt running time

- Number of comparisons bounded by characters in T
 - Every comparison starts at text position where last comparison ended
 - Every shift results in at most one extra comparison
 - At most $|T|$ shifts \Rightarrow Running time bounded by $2|T|

Boyer-Moore algorithm

- Three fundamental ideas:
 1. Right-to-left comparison
 2. Alphabet-based shift rule
 3. Preprocessing-based shift rule

- Results in:
 - Very good algorithm in practice
 - Rule 2 results in large shifts and sub-linear time
 - Rule 3 ensures worst-case linear behavior
 - even in small alphabets, ex: DNA sequences

The Z algorithm

- The Z algorithm
 - Concatenate $P + \$$ + T
 - Compute fundamental pre-processing $O(m+n)$
 - Report all starting positions i for which $Z_i = |P|

Semi-numerical string matching

Karp-Rabin algorithm

- Interpret strings as numbers
- Compute next number based on previous one
Computing the hash scores in linear time

- Use previous score to compute the next one

\[
\begin{align*}
14152 &= (31415-3\times10000)\times10^2 \pmod{13} \\
&= (7-3\times3)\times10^2 \pmod{13} \\
&= 8 \pmod{13}
\end{align*}
\]

- Other semi-numerical methods
 - Fast Fourier Transform
 - Shift-And method

String algorithms

- Today: String matching I
 - The exact string matching problem
 - Naïve algorithm
 - Preprocessing the query:
 - Fundamental pre-processing
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore algorithm
 - Z algorithm algorithm
 - Semi-numerical string matching
 - Rabin-Karp algorithm
- Wednesday: String matching II
 - Suffix-trees
 - Inexact matching
- Friday: Finite State Machines
 - String matching automata