Test Suite Grade Correlation (2010)

\[R^2 = 0.8191 \]
6.172
Performance Engineering of Software Systems

LECTURE 4
Bit Hacks

Charles E. Leiserson

September 20, 2011
Problem
Swap two integers x and y.

$t = x;
x = y;
y = t;$
No-Temp Swap

Problem
Swap two integers \(x \) and \(y \) without using a temporary.

\[
\begin{align*}
x &= x \ XOR y; \\
y &= x \ XOR y; \\
x &= x \ XOR y;
\end{align*}
\]

Example

<table>
<thead>
<tr>
<th></th>
<th>10111101</th>
<th>10010011</th>
<th>10010011</th>
<th>00101110</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>10111101</td>
<td>10010011</td>
<td>10010011</td>
<td>00101110</td>
</tr>
<tr>
<td>(y)</td>
<td>00101110</td>
<td>00101110</td>
<td>10111101</td>
<td>10111101</td>
</tr>
</tbody>
</table>
No-Temp Swap

Problem
Swap two integers \(x \) and \(y \) without using a temporary.

\[
x = x \oplus y; \\
y = x \oplus y; \\
x = x \oplus y;
\]

Example

<table>
<thead>
<tr>
<th>x</th>
<th>10111101</th>
<th>10010011</th>
<th>10010011</th>
<th>00101110</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>00101110</td>
<td>00101110</td>
<td>10111101</td>
<td>10111101</td>
</tr>
</tbody>
</table>
No-Temp Swap

Problem
Swap two integers x and y without using a temporary.

\[
\begin{align*}
x &= x \oplus y; \\
y &= x \oplus y; \\
x &= x \oplus y;
\end{align*}
\]

Example

<table>
<thead>
<tr>
<th></th>
<th>10111101</th>
<th>10010011</th>
<th>10010011</th>
<th>00101110</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>00101110</td>
<td>00101110</td>
<td>10111101</td>
<td>10111101</td>
</tr>
<tr>
<td>y</td>
<td>00101110</td>
<td>00101110</td>
<td>10111101</td>
<td>10111101</td>
</tr>
</tbody>
</table>
No-Temp Swap

Problem
Swap two integers x and y without using a temporary.

```plaintext
x = x ^ y;
y = x ^ y;
x = x ^ y;
```

Example

<table>
<thead>
<tr>
<th></th>
<th>10111101</th>
<th>10010011</th>
<th>10010011</th>
<th>00101110</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>10111101</td>
<td>10010011</td>
<td>10010011</td>
<td>00101110</td>
</tr>
<tr>
<td>y</td>
<td>00101110</td>
<td>00101110</td>
<td>10111101</td>
<td>10111101</td>
</tr>
</tbody>
</table>
No-Temp Swap

Problem
Swap two integers \(x\) and \(y\) without using a temporary.

\[
\begin{align*}
x &= x \oplus y; \\
y &= x \oplus y; \\
x &= x \oplus y;
\end{align*}
\]

Example

<table>
<thead>
<tr>
<th></th>
<th>(10111101)</th>
<th>(10010011)</th>
<th>(10010011)</th>
<th>(00101110)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(00101110)</td>
<td>(00101110)</td>
<td>(10111101)</td>
<td>(10111101)</td>
</tr>
</tbody>
</table>

Why it works
XOR is its own inverse: \((x \oplus y) \oplus y = x\).

Performance
Poor at exploiting instruction-level parallelism (ILP).
Minimum of Two Integers

Problem
Find the minimum \(r \) of two integers \(x \) and \(y \).

```plaintext
if (x < y)
  r = x;
else
  r = y;
```

or

```plaintext
r = (x < y) ? x : y;
```

Performance
A mispredicted branch empties the processor pipeline
- \(~16\) cycles on the cloud facility’s Intel Core i7’s.
The compiler may be smart enough to optimize away the unpredictable branch, but maybe not.
No-Branch Minimum

Problem
Find the minimum z of two integers x and y without a branch.

$$r = y ^ {((x ^ y) \& -(x < y))}$$

Why it works:
• The C language represents the Booleans TRUE and FALSE with the integers 1 and 0, respectively.
• If $x < y$, then $-(x < y) = -1$, which is all 1’s in two’s complement representation. Therefore, we have $y ^ (x ^ y) = x$.
• If $x \geq y$, then $-(x < y) = 0$. Therefore, we have $y ^ 0 = y$.
static void merge(long * __restrict C,
 long * __restrict A,
 long * __restrict B,
 size_t na,
 size_t nb)
{
 while (na > 0 && nb > 0) {
 if (*A <= *B) {
 *C++ = *A++; na--;
 } else {
 *C++ = *B++; nb--;
 }
 }
 while (na>0) {
 *C++ = *A++;
 na--;
 }
 while (nb>0) {
 *C++ = *B++;
 nb--;
 }
}
Branching

```c
static void merge(long * __restrict C,
                 long * __restrict A,
                 long * __restrict B,
                 size_t na,
                 size_t nb)
{
    while (na > 0 && nb > 0) {
        if (*A <= *B) {
            *C++ = *A++; na--;
        } else {
            *C++ = *B++; nb--;
        }
    }
    while (na > 0) {
        *C++ = *A++; na--;
    }
    while (nb > 0) {
        *C++ = *B++; nb--;
    }
}
```

<table>
<thead>
<tr>
<th>Branch</th>
<th>Predictable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
</tr>
</tbody>
</table>
On the cloud machines using `icc -O3`, the branchless version is just over 5% faster than the branching version.

```c
static void merge(long * __restrict C,
                  long * __restrict A,
                  long * __restrict B,
                  size_t na,
                  size_t nb)
{
    while (na > 0 && nb > 0) {
        long cmp = (*A <= *B);
        long min = *B ^ ((*B ^ *A) & (-cmp));
        *C++ = min;
        A += cmp; na -= cmp;
        B += !cmp; nb -= !cmp;
    }
    while (na>0) {
        *C++ = *A++;
        na--;
    }
    while (nb>0) {
        *C++ = *B++;
        nb--;
    }
}
```
Modular Addition

Problem
Compute \((x + y) \mod n\), assuming that \(0 \leq x < n\) and \(0 \leq y < n\).

\[
\begin{align*}
 r & = (x + y) \mod n; \\
 z & = x + y; \\
 r & = (z < n) \ ? \ z : \ z - n;
\end{align*}
\]

Divide is expensive, unless by a power of 2.

\[
\begin{align*}
 z & = x + y; \\
 r & = z - (n \ & \ -(z \geq n));
\end{align*}
\]

Unpredictable branch is expensive.

Same trick as minimum.
Problem
Compute $2^{\lceil \log n \rceil}$.

// 64-bit integers
- - n;
n | = n >> 1;
n | = n >> 2;
n | = n >> 4;
n | = n >> 8;
n | = n >> 16;
n | = n >> 32;
++n;

Example

<table>
<thead>
<tr>
<th>0010000001010000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0010000001001111</td>
</tr>
<tr>
<td>0011000001101111</td>
</tr>
<tr>
<td>0011110001111111</td>
</tr>
<tr>
<td>0011111111111111</td>
</tr>
<tr>
<td>0100000000000000</td>
</tr>
</tbody>
</table>
Round up to a Power of 2

Problem
Compute $2^{\lceil \log n \rceil}$.

// 64-bit integers
- - n;
 n | = n >> 1;
 n | = n >> 2;
 n | = n >> 4;
 n | = n >> 8;
 n | = n >> 16;
 n | = n >> 32;
++n;

Example

00100000001010000
0010000001001111
0011000001101111
0011110001111111
0011111111111111
0100000000000000
Problem
Compute $2^{\lceil \log n \rceil}$.

// 64-bit integers
- - n;
 n |= n >> 1;
 n |= n >> 2;
 n |= n >> 4;
 n |= n >> 8;
 n |= n >> 16;
 n |= n >> 32;
++n;

Example

<table>
<thead>
<tr>
<th>0010000001010000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0010000001001111</td>
</tr>
<tr>
<td>0011000001101111</td>
</tr>
<tr>
<td>0011110001111111</td>
</tr>
<tr>
<td>0011111111111111</td>
</tr>
<tr>
<td>0100000000000000</td>
</tr>
</tbody>
</table>
Problem
Compute $2^\lceil \log n \rceil$.

Example

```c
// 64-bit integers
- - n;
 n |= n >> 1;
 n |= n >> 2;
 n |= n >> 4;
 n |= n >> 8;
 n |= n >> 16;
 n |= n >> 32;
++n;
```

<table>
<thead>
<tr>
<th></th>
<th>0010000001010000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0010000001001111</td>
</tr>
<tr>
<td></td>
<td>0011000001101111</td>
</tr>
<tr>
<td></td>
<td>0011111111111111</td>
</tr>
<tr>
<td></td>
<td>0011111111111111</td>
</tr>
<tr>
<td></td>
<td>0100000000000000</td>
</tr>
</tbody>
</table>

© 2011 Charles E. Leiserson
Round up to a Power of 2

Problem
Compute $2^\lceil \log n \rceil$.

// 64-bit integers
- - n;
n | = n >> 1;
n | = n >> 2;
n | = n >> 4;
n | = n >> 8;
n | = n >> 16;
n | = n >> 32;
++n;

Example

| 0010000001010000 |
| 0010000001001111 |
| 0011000001101111 |
| 0011110001111111 |
| 0011111111111111 |
| 0100000000000000 |
Problem

Compute $2^\lceil \log n \rceil$.

// 64-bit integers
- - n;
 n |= n >> 1;
 n |= n >> 2;
 n |= n >> 4;
 n |= n >> 8;
 n |= n >> 16;
 n |= n >> 32;
 ++n;

Example

<table>
<thead>
<tr>
<th>0010000001010000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0010000001001111</td>
</tr>
<tr>
<td>0011000001101111</td>
</tr>
<tr>
<td>0011110001111111</td>
</tr>
<tr>
<td>0011111111111111</td>
</tr>
<tr>
<td>0100000000000000</td>
</tr>
</tbody>
</table>
Round up to a Power of 2

Problem
Compute \(2^{\lceil \log n \rceil}\).

// 64-bit integers
- - n;
n |= n >> 1;
n |= n >> 2;
n |= n >> 4;
n |= n >> 8;
n |= n >> 16;
n |= n >> 32;
++n;

Example

<table>
<thead>
<tr>
<th>0010000001010000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0010000001001111</td>
</tr>
<tr>
<td>0011000001101111</td>
</tr>
<tr>
<td>0011110001111111</td>
</tr>
<tr>
<td>0011111111111111</td>
</tr>
<tr>
<td>0100000000000000</td>
</tr>
</tbody>
</table>

Why decrement and increment?
To handle the boundary case when \(n\) is a power of 2.
Least-Significant 1

Problem
Compute the mask of the least-significant 1 in word x.

$$r = x \& (-x);$$

Example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>00100000001010000</td>
</tr>
<tr>
<td>$-x$</td>
<td>11011111110110000</td>
</tr>
<tr>
<td>$x & (-x)$</td>
<td>0000000000010000</td>
</tr>
</tbody>
</table>

Question
How do you find the index of the bit, i.e., $\lg r = \log_2 r$?
Problem
Compute \(\log_2 x \), where \(x \) is a power of 2.

```c
const uint64_t deBruijn = 0x022fdd63cc95386d;
const unsigned int convert[64] = {
  0, 1, 2, 53, 3, 7, 54, 27,
  4, 38, 41, 8, 34, 55, 48, 28,
  62, 5, 39, 46, 44, 42, 22, 9,
  24, 35, 59, 56, 49, 18, 29, 11,
  63, 52, 6, 26, 37, 40, 33, 47,
  61, 45, 43, 21, 23, 58, 17, 10,
  51, 25, 36, 32, 60, 20, 57, 16,
  50, 31, 19, 15, 30, 14, 13, 12};

r = convert[(x*deBruijn) >> 58];
```
Introducing
The Engineer Who Invented ESD*
★ The Technology to Read Minds ★

*Extra–Sensory Deception

© 2011 Charles E. Leiserson
Log Base 2 of a Power of 2

Why it works
A deBruijn sequence s of length 2^k is a cyclic 0–1 sequence such that each of the 2^k 0–1 strings of length k occurs exactly once as a substring of s.

00011101_2 * 2^4 = 11010000_2
11010000_2 >> 5 = 6
convert[6] = 4

Performance
Limited by multiply and table look-up

Example $k=3$

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>001</td>
<td>011</td>
<td>111</td>
<td>110</td>
<td>101</td>
<td>010</td>
<td>100</td>
</tr>
</tbody>
</table>

convert[8] =
{0, 1, 6, 2, 7, 5, 4, 3};
Population Count I

Problem
Count the number of 1 bits in a word x.

```
for (r = 0; x != 0; ++r)
x &= x - 1;
```

Repeatedly eliminate the least-significant 1.

Example

<table>
<thead>
<tr>
<th>x</th>
<th>0010110111010000</th>
</tr>
</thead>
<tbody>
<tr>
<td>x-1</td>
<td>0010110111001111</td>
</tr>
<tr>
<td>x & (x-1)</td>
<td>0010110111000000</td>
</tr>
</tbody>
</table>

Issue
Fast if the popcount is small, but in the worst case, the running time is proportional to the number of bits in the word.
Table look-up

```c
static const int count[256] =
{0, 1, 1, 2, 1, 2, 2, 3, 1, ..., 8};  // #1's in index

for (r=0; x!=0; x>>=8)
  r += count[x & 0xFF];
```

Performance
Memory operations are much more costly than register operations:
- register: 1 cycle (6 ops issued per cycle per core),
- L1-cache: 4 cycles,
- L2-cache: 10 cycles,
- L3-cache: 50 cycles,
- DRAM: 150 cycles.
Population Count III

Parallel divide-and-conquer

Performance

\(\Theta(\lg n)\) time, where \(n =\) word length.

```plaintext
// Create masks
B5 = ~( -1 << 32);
B4 = B5 ^ (B5 << 16);
B3 = B4 ^ (B4 << 8);
B2 = B3 ^ (B3 << 4);
B1 = B2 ^ (B2 << 2);
B0 = B1 ^ (B1 << 1);

// Compute popcount
x = ((x >> 1) & B0) + (x & B0);
x = ((x >> 2) & B1) + (x & B1);
x = ((x >> 4) + x) & B2;
x = ((x >> 8) + x) & B3;
x = ((x >> 16) + x) & B4;
x = ((x >> 32) + x) & B5;
```
Population Count III

11110101000110000011011111001010
11110101000110000011011111001010
Population Count III

\[
\begin{array}{cccccccccccccccccccccccc}
1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline
1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
\hline
1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
\end{array}
\]
Population Count III

\[
\begin{array}{cccccccccccccccccccc}
1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\hline
+ & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
\hline
\hline
+ & 10 & 01 & 01 & 00 & 00 & 10 & 10 & 00 & 10 & 01 & 01 \\
\hline
\hline
0100001000010001001000110010001000100010
\end{array}
\]
Population Count III

\[
\begin{array}{ccccccccc}
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\
+ & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline
10 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
+ & 10 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline
0010 & 0001 & 0011 & 0010 \\
\end{array}
\]

\[
\begin{array}{ccccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
+ & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
\hline
000011000000010 \end{array}
\]
Population Count III

\[
\begin{align*}
&1111010100011000000110111110010100 \\
+ &11111110100011100001111010000000 \\
+ &11111110110011111110100001111101111101111
\end{align*}
\]
Population Count III

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>01</td>
<td>01</td>
<td>00</td>
<td>10</td>
<td>10</td>
<td>00</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>10</td>
<td>01</td>
<td>00</td>
<td>01</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0010</td>
<td>0001</td>
<td>0011</td>
<td>0010</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>0100</td>
<td>0001</td>
<td>0010</td>
<td>0010</td>
<td></td>
</tr>
<tr>
<td></td>
<td>000000010</td>
<td>00000100</td>
<td>00000101</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>00000110</td>
<td>00000101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00000000000001000</td>
<td>00000000000001001</td>
<td></td>
</tr>
</tbody>
</table>
Population Count III

<table>
<thead>
<tr>
<th>11110101000110000011011111001010</th>
<th>+</th>
<th>1 1 1 1 0 1 0 0 0 1 1 1 1 1 0 0 0 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td>1 1 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 01 01 00 10 10 00 01 10 01 11</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>10 01 00 01 00 01 10 01 01 01 01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0010 0001 0011 0010 0010 0010 0010</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>0100 0001 0010 0010 0010 0010 0010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>000000010 0000000100 0000000101 0000000101</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>000000000000001000 000000000000001001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>000000000000001000 000000000000001001</td>
</tr>
</tbody>
</table>
Population Count III

<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

+ 1 1 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1

<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>01</td>
<td>01</td>
<td>00</td>
<td>10</td>
<td>10</td>
<td>00</td>
<td>01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

+ 10 01 00 01 00 01 10 01

<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0010</td>
<td>0001</td>
<td>0011</td>
<td>0010</td>
<td></td>
</tr>
</tbody>
</table>

+ 0100 0001 0010 0010

<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>00000010</td>
<td>00000100</td>
<td></td>
</tr>
</tbody>
</table>

+ 00000110 00000101

<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0000001001</td>
<td>0000001001</td>
<td></td>
</tr>
</tbody>
</table>

+ 0000001000 0000001000

<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>000000000000001001</td>
<td></td>
</tr>
</tbody>
</table>

+ 000000000000001000

<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000000000010001</td>
<td></td>
</tr>
</tbody>
</table>

17
Queens Problem

Problem
Place \(n \) queens on an \(n \times n \) chessboard so that no queen attacks another, i.e., no two queens in any row, column, or diagonal.
Strategy
Try placing queens row by row. If you can’t place a queen in a row, backtrack.
Strategy
Try placing queens row by row. If you can’t place a queen in a row, backtrack.
Strategy
Try placing queens row by row. If you can’t place a queen in a row, backtrack.
Strategy
Try placing queens row by row. If you can’t place a queen in a row, backtrack.
Strategy
Try placing queens row by row. If you can’t place a queen in a row, backtrack.
Strategy
Try placing queens row by row. If you can’t place a queen in a row, backtrack.
Strategy
Try placing queens row by row. If you can’t place a queen in a row, backtrack.
Strategy
Try placing queens row by row. If you can’t place a queen in a row, backtrack.
Strategy
Try placing queens row by row. If you can’t place a queen in a row, backtrack.
Strategy
Try placing queens row by row. If you can’t place a queen in a row, backtrack.
Board Representation

The backtrack search can be implemented as a simple recursive procedure, but how should the board be represented to facilitate queen placement?

- array of n^2 bytes?
- array of n^2 bits?
- array of n bytes?
- 3 bitvectors of size n, $2n-1$, and $2n-1$!
Bitvector Representation

Placing a queen in column c is not safe if $\text{down} \& (1 \ll c)$ is nonzero.
Placing a queen in row \(r \) and column \(c \) is not safe if
\[
\text{left} \land (1 \ll (r + c)) \nonumber
\]
is nonzero.
Bitvector Representation

Placing a queen in row \(r \) and column \(c \) is not safe if \(\text{right} \& (1 \ll (n - r + c)) \) is nonzero.
Modern computers implement some of the functions discussed in this lecture directly in hardware. The Intel Software Developer’s Manual describes *compiler intrinsics* that will let you access this functionality efficiently.
Further Reading

http://chessprogramming.wikispaces.com/

Happy Bit Hacking!