Algebraic Network Coding Approach to Deterministic Wireless Relay Networks: Kim and Médard

Open problem: Capacity & code construction for wireless relay networks
- Channel noise
- Interference

[Avestimehr et al. ‘07] Deterministic model (ADT model)
- Interference
- Does not take into account channel noise
- In essence, high SNR regime

ADT Network:
- Min-cut Max-flow for unicast/multicast
- Matroidal

Describe ADT with Algebraic Network Coding [Koetter et al. ‘03]
- Use hyperedges: broadcast dependencies
- System matrix captures min-cut and other properties of the ADT
- Extend to non-multicast connections
- Network with erasures and cycles

Statement:
- System matrix $M = A(I - F)^{-1}B^T$
 - Encoding at source: A
 - Decoding at destination: B
 - Network code: $(I - F)^{-1}$

Theorem: Min-cut of ADT networks

\[
\text{mincut}(S,T) = \min_{\Omega} \text{rank}(G_{\Omega}) = \max_{\alpha(e,c),\beta(c'),c(e,c)} \text{rank}(M) \]

1. Show capacity characterization for unicast, multicast, multiple multicast, disjoint multicast, two-level multicast
2. Random linear network coding is capacity achieving
3. Extend to networks with random erasures/failures
4. Extend to networks with cycles

ASSUMPTIONS AND LIMITATIONS:
- Requires larger field size
- Does not prove/disprove ADT network’s ability to approximate the wireless networks

Algebraic network coding to understand capacity and code construction for deterministic wireless relay model
Wireless Network

- Open problem: capacity & code construction for wireless relay networks
 - Channel noise
 - Interference

- [Avestimehr et al. ‘07] “Deterministic model” (ADT model)
 - Interference
 - Does not take into account channel noise
 - In essence, high SNR regime

- High SNR
 - Noise → 0
 - Large gain
 - Large transmit power

\[
Y(e_3) = \beta_1 Y(e_1) + \beta_2 Y(e_2)
\]
• Min-cut: minimal rank of an incidence matrix of a certain cut between the source and destination [Avestimehr et al. ‘07]
 – Requires optimization over a large set of matrices
• Min-cut Max-flow Theorem holds for unicast/multicast sessions [Avestimehr et al. ‘07]
• Matroidal [Goemans et al. ‘09]
• Code construction algorithms [Amaudruz et al. ‘09][Erez et al. ‘10]
Our Contributions

• Connection to Algebraic Network Coding [Koetter et al. ‘03]:
 – Use of higher field size
 – Model broadcast constraint with hyper-edges
 – Capture ADT network problem with a single system matrix M
 • Prove that min-cut of ADT networks = rank(M)
 • Prove Min-cut Max-flow for unicast/multicast holds
 • Extend optimality of linear operations to non-multicast sessions
 • Incorporate failures and erasures
 • Incorporate cycles
 – Show that random linear network coding achieves capacity
 – Do not prove/disprove ADT network model’s ability to approximate
 the wireless networks; but show that ADT network problems can be
 captured by the algebraic network coding framework
• [Jaggi et al. ‘06] “permute-and-add”: Show that network codes in higher field size F_q can be converted to binary-vector code without loss in performance.

• Operations in F_2 is not sufficient to achieve capacity for multicast connections: need to operate in higher field size and/or binary-vector (See [Erez et al. ‘10] for an illustrative example).

• Therefore, we focus on higher field size F_q.
ADT Network Model

- Original ADT model:
 - Broadcast: multiple edges (bit pipes) from the same node
 - Interference: additive MAC over binary field

- Algebraic model:

Possible "codes" at e_{12}, which represents the MAC constraint

<table>
<thead>
<tr>
<th>c</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Use hyperedges to model broadcast constraint

0/1 decision: To transmit or not
• Linear operations

 - Encoding at the source S: $\alpha(i, e_j)$

 $$A = \begin{pmatrix}
 \alpha_{1,e_1} & \alpha_{1,e_2} & 0 & \cdots & 0 \\
 \alpha_{2,e_1} & \alpha_{2,e_2} & 0 & \cdots & 0
 \end{pmatrix}$$

 - Decoding at the destination T: $\varepsilon(e_j, (T, i))$

 $$B = \begin{pmatrix}
 0 & \cdots & 0 & \varepsilon(e_{11},(T,1)) & \varepsilon(e_{12},(T,1)) \\
 0 & \cdots & 0 & \varepsilon(e_{11},(T,2)) & \varepsilon(e_{12},(T,2))
 \end{pmatrix}$$
Algebraic Framework

- **$X(S, i)$**: source process i
- **$Y(e)$**: process at port e
- **$Z(T, i)$**: destination process i

Linear operations
- at the source S: $\alpha(i, e_j)$
- at the nodes V: $\beta(e_j, e_{j'})$
- at the destination T: $\varepsilon(e_j, (T, i))$

Example Equations

- $Y(e_1) = \alpha_{(1,e_1)}X(S, 1) + \alpha_{(2,e_1)}X(S, 2)$
- $Y(e_2) = \alpha_{(1,e_2)}X(S, 1) + \alpha_{(2,e_2)}X(S, 2)$
- $Y(e_3) = Y(e_6) = Y(e_1)$
- $Y(e_4) = Y(e_2)$
- $Y(e_5) = Y(e_8) = 0$
- $Y(e_7) = \beta_{(e_3,e_7)}Y(e_3) + \beta_{(e_4,e_7)}Y(e_4)$
- $Y(e_9) = Y(e_{11}) = \beta_{(e_6,e_9)}Y(e_6)$
- $Y(e_{10}) = \beta_{(e_6,e_{10})}Y(e_6)$
- $Y(e_{12}) = Y(e_7) + Y(e_{10})$
- $Z(T, 1) = \varepsilon_{(e_{11},(T,1))}Y(e_{11}) + \varepsilon_{(e_{12},(T,1))}Y(e_{12})$
- $Z(T, 2) = \varepsilon_{(e_{11},(T,2))}Y(e_{11}) + \varepsilon_{(e_{12},(T,2))}Y(e_{12})$
- Broadcast constraint: Use hyperedges
- MAC constraint: possible “codes”
- Use higher field sizes: combine binary edges (binary-vector)
 - Interaction between β and α, γ:
 - (α+β) alone does not constrain the choice of α
 - (α+γ) alone is fine as well
 - Larger field to ensure both are satisfied

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>c</th>
<th>⊕</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>γ</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>α</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>α+γ</td>
<td></td>
</tr>
</tbody>
</table>
System Matrix $M = A(I - F)^{-1}B^T$

- Linear operations
 - Coding at the nodes V: $\beta(e_j, e_{j'})$
 - F represents physical structure of the ADT network
 - F^k: non-zero entry = path of length k between nodes exists
 - $(I-F)^{-1} = I + F + F^2 + F^3 + \ldots$: connectivity of the network (impulse response of the network)

\[
F = \begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \beta(e_3, e_7) & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \beta(e_4, e_7) & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

Broadcast constraint (hyperedge)
MAC constraint (addition)
Internal operations (network code)
System Matrix \(M = A(I - F)^{-1}B^T \)

- Input-output relationship of the network

\[
Z = X(S) \cdot M
\]

Captures rate of the network

\[
= |\mathcal{X}(S)| \cdot A
\]

\[
\begin{bmatrix}
|O(S)| & |\mathcal{E}|
\end{bmatrix}
\]

\[
|\mathcal{E}|
\]

\[
(I - F)^{-1}
\]

Captures network code, topology (Field size as well)
Theorem: Min-cut of ADT Networks

\[\mincut(S, T) = \min_{\Omega} \text{rank}(G_{\Omega}) \]
\[= \max_{\alpha(i, e), \beta(e', e), \epsilon(e', i)} \text{rank}(M) \]

- From the original paper by Avestimehr et al.
 - Requires optimizing over ALL cuts between \(S \) and \(T \)
 - Not constructive: assumes infinite block length, internal node operations not considered

- Show that the rank of \(M \) is equivalent to optimizing over all cuts
 - System matrix captures the structure of the network
 - Constructive: the assignment of variables gives a network code
Min-cut Max-flow Theorem

- For a unicast/multicast connection from source S to destination T, the following are equivalent:
 1. A unicast/multicast connection of rate R is feasible.
 2. $\text{mincut}(S, T_i) \geq R$ for all destinations T_i.
 3. There exists an assignment of variables such that M is invertible.

- Proof idea:
 1. & 2. equivalent by previous work.
 3.→1. If M is invertible, then connection has been established.
 1.→3. If connection established, $M = I$. Therefore, M is invertible.

- **Corollary:**
 Random linear network coding achieves capacity for a unicast/multicast connection.
Extensions to Non-multicast Connections

- [Multiple multicast] Multiple sources $S_1 S_2 \ldots S_k$ wants to transmit to all destinations $T_1 T_2 \ldots T_N$
 - Connection feasible if and only if $\text{mincut}\{S_1 S_2 \ldots S_k\}, T_j \geq \text{sum of rate from sources } S_1 S_2 \ldots S_k$

- Proof idea:
 Introduce a super-source S, and apply the multicast min-cut max-flow theorem.
• [Disjoint Multicast]

\[\mathcal{X}(S, T_i) \cap \mathcal{X}(S, T_j) = \emptyset \text{ for all } i \neq j \]

The connection is feasible if and only if:

\[\text{mincut}(S, \mathcal{T}') \geq \sum_{T_i \in \mathcal{T}'} |\mathcal{X}(S, T_i)| \text{ for any } \mathcal{T}' \subseteq \mathcal{T} \]

• Proof idea:
Introduce a super-destination T, and apply the multicast min-cut max-flow theorem.
• [Two-level Multicast] A set of destinations, T_m, participate in a multicast connection; rest of the destinations, T_d, in a disjoint multicast. The connection is feasible if and only if:
 - T_m: Satisfy single multicast connection requirement.
 - T_d: Satisfy disjoint multicast connection requirement.

![System matrix M](image)
• Multiple multicast:
 – Random linear network coding achieves capacity

• Disjoint/Two-level multicast:
 – Random linear network coding at *intermediate nodes*; but a carefully chosen *encoding matrix at source* achieves capacity
Generalized Min-cut Max-flow Theorem

- For any general connection set
- Sufficiency condition (not necessary)

Given an acyclic network G with a connection set \mathcal{C}, let $M = \{M_{i,j}\}$ where $M_{i,j}$ is the system matrix for source processes $\mathcal{X}(S_i)$ to destination processes $\mathcal{Z}(T_j)$. Then, (G, \mathcal{C}) is solvable if there exists an assignment of $\alpha(i,e_j)$, $\epsilon(e_i,(T_j,k))$, and $\beta(e_i,e_j)$ such that

1) $M_{i,j} = 0$ for all $(S_i, T_j, \mathcal{X}(S_i, T_j)) \notin \mathcal{C}$,
2) Let $(S_{\sigma(i)}, T_j, \mathcal{X}(S_{\sigma(i)}, T_j)) \in \mathcal{C}$ for $i \in [1, K(j)]$.

Thus, this is the set of connections with T_j as a receiver. Then, $[M^{T}_{\sigma(1),j}, M^{T}_{\sigma(2),j}, \ldots, M^{T}_{\sigma(K_j),j}]$ is a $|\mathcal{Z}(T_j)| \times |\mathcal{Z}(T_j)|$ is a nonsingular system matrix.
Incorporating erasures in ADT network

• Wireless networks: stochastic in nature
 – Random erasures occur

• ADT network
 – Models wireless deterministically with parallel bit-pipes
 – Min-cut as well as previous code construction algorithm needs to be recomputed every time the network changes

• Algebraic framework:
 – Robust against some set of link failures (network code will remain successful regardless of these failures)
 – The time average of $\text{rank}(M)$ gives the true min-cut of the network
 – Applies to the connections described previously
Incorporating cycles in ADT network

- Wireless networks intrinsically have bi-directional links; therefore, cycles exist.

- ADT network mode
 - A directed network without cycles: links from the source to the destinations

- Algebraic framework
 - To incorporate cycles, need a notion of time (causal); therefore, introduce delay on links D
 - Express network processes in power series in D
 - The same theorems as for delay-less network apply
Conclusions

- ADT network can be expressed with Algebraic Network Coding Formulation [Koetter et al. ‘03].
 - Use of higher field size
 - Model broadcast constraint with hyper-edge
 - Capture ADT network problem with a single system matrix M

- Prove an algebraic definition of \textbf{min-cut} = rank(M)

- Prove Min-cut Max-flow for unicast/multicast holds

- Extend optimality of linear operations to \textbf{non-multicast} sessions
 - Disjoint multicast, Two-level multicast, multiple source multicast, generalized min-cut max-flow theorem

- Show that \textbf{random linear network coding} achieves capacity

- Incorporate \textbf{delay} and \textbf{failures} (allows cycles within the network)