Network Coding for Large Latency and/or Half-Duplex Channels

Muriel Médard

Joint work with
Daniel Lucani, Milica Stojanovic, David Karger
• **Application:**
 - **Time-Division Duplexing or ‘Half-Duplex’ channels**
 - Node can transmit and receive, but not at the same time
 - Not necessarily half time for transmitter and half for receiver
 - How much should we talk before stopping to listen?
 - **Long latency channels**
 - Satellite and deep space communications
 - Very long distances (~10,000 km and up)
 - Underwater acoustic communications
 - Low propagation speed (~1500 m/s)
 - Long distances (~km)

• **Previous work**
 - ARQ schemes
 - FEC schemes: block-based (no feedback) or rateless
 - Hybrid schemes
Network Topologies Studied

1-to-all Broadcast

all-to-all Broadcast

Tx with M packets
Description of Scheme: one Rx – one Tx

- **Goal:** reliable transmission of a block of data packets

M data packets

Degrees of freedom needed by Rx:

- Generates N_M random linear coded packets

Erasure Channel

- Header
- Coded Data $C_1 \ldots C_M$

M data packets

ACK degrees of freedom required to decode (dofs req’d):

Not particular data packet

Degrees of freedom needed to decode:

M

Choice of N_i, $\forall i$ determines performance of scheme

M

Note: N_i
Minimizing Completion Time or Energy

TDD constraint

- Ni, ∀i chosen to minimize
 - Mean completion time
 - Mean completion energy (ICC’09)

Full Duplex Network Coding:

e.g: M = 10, round trip time = 250 ms, Rate = 1.5 Mbps
Throughput

- N_i, $\forall i$ chosen to minimize mean completion time for channel conditions
- e.g: $M = 10$, Rate = 10 Mbps

Throughput Metric

$$\eta = \frac{\text{#bits}}{\mathbb{E}[\text{Time}]}$$

- Increasing latency, favors network coding TDD scheme
- Better performance than Go-back-N (GBN) and Selective Repeat (SR) for TDD
• **Challenges:**
 • Optimal scheme: variables to optimize is too large
 • Good heuristics
Completion Time: Broadcast

- Outperforms TDD constrained Round Robin broadcast scheme (optimal, no coding)
- For high erasure probability: Outperforms full duplex Round Robin broadcast

0.8dB @ Pe = 0.8

Pe > 0.3 better than RR full duplex
Conclusions

• Tailoring feedback and coding can reduce mean delay for successful in-order transmission of packets

• Simple off-line optimization
 – Nodes need look-up tables

• Optimizing for completion time:
 – Mean completion time is close to Full Duplex
 – Mean completion energy:
 • Close to optimal
 • Considerably lower than full duplex
 – Throughput performance is equal or better than Go-back-N and Selective Repeat
Extra Slides
Random Linear Network Coding

• Generating a random linear network coded packet (CP)

\[CP_j = \sum C_i P_i \]

• Operations over finite field of size \(q = 2^g \).

 e.g. \(g = 8 \) bits, \(q = 256 \)

\(P_1 \)

\(P_2 \)

\(h \) bits \hspace{2cm} n \) bits \hspace{2cm} \(g \) bits
Errors in estimate of probability of erasure

Over /Underestimate of P_e: similar results at low P_e

Underestimate of P_e: Better performance at high P_e
Variance of Completion Time

Variance is not continuous w.r.t packet erasure prob. Why?

As packet erasure prob. increases, number of coded packets sent N_i increases.