Problem Set 6, Part a

Due: Thursday, December 1, 2011

Readings:

Borowsky, Gafni, Lynch, Rajsbaum paper.
Attiya, Welch, Section 5.3.2
Attie, Guerraoui, Kouznetsov, Lynch, Rajsbaum paper
Distributed algorithms book, Chapter 17
Lamport’s “Part-Time Parliament” paper

Next week: Chandra, Toueg paper
Chandra, Hadzilacos, Toueg paper

Problems:

1. As noted in class, the Borowsky, Gafni, et al. paper has a liveness bug in the main protocol. Namely, a simulating process i may repeatedly decide to select the same process j to perform a snapshot, using safe-agreement, neglecting some other process j'.

 (a) Why doesn’t the task structure of process i, which has a separate task for each simulated process, ensure progress for all the simulated processes?

 (b) Informally describe a simple modification to the algorithm that would fix this problem and guarantee that all the simulated processes get fair turns.

2. Consider the following decision problem, which we call the c-shrinking problem, where c is a positive integer. The value domain V is the set of real numbers. For any input vector I of elements of V, the allowable output vectors are those vectors O for which (i) every element in O is in the range of the values in I, and (ii) the difference between any two values in O is at most Δ/c, where Δ is the maximum difference between two values in I.

 (a) Consider an asynchronous read/write shared-memory system with 10 processes and at most one stopping failure. Describe a very simple algorithm A that solves the 9-shrinking problem for this model. Explain why it is correct.

 (b) Consider the same algorithm run for 3 processes with at most one stopping failure. For what value of c does it solve the c-shrinking problem?

 (c) Now consider another 3-process algorithm with one stopping failure, based on applying the BG transformation to the 10-process algorithm from part (a). For what value of c does this solve the c-shrinking problem?

3. Exercise 17.10. You may write pseudocode or use Tempo to describe your algorithm.

4. In the first phase of the Paxos consensus algorithm, a participating process i performs a step whereby it abstains from an entire group of ballots at once; namely, the set B of all ballots whose identifiers are strictly less than some particular proposed ballot identifier b, and that i has not already voted for. This set B may include ballots that have not yet been created.

 Suppose that, instead, process i simply abstained from all ballots in the set B that it knows have already been created. Does the algorithm still guarantee the agreement property? If so, give a convincing argument. If not, give a counterexample execution.