Decision Analysis & Decision Support 6.872/HST.950

Tasks?
- Mechanics
 - Record keeping
 - Administration
 - Scheduling
 - ...
- Diagnosis
- Prognosis
- Therapy

Types of Decision Support
- “Doctor's Assistant” for clinicians at any level of training
- Expert (specialist) consultation for non-specialists
- Monitoring and error detection
- Critiquing, what-if
- Guiding patient-controlled care
- Education and Training
- Contribution to medical research
- ...

Two Historical Views on How to Build Expert Systems
- Great cleverness
 - Powerful inference abilities
 - Ab initio reasoning
- Great stores of knowledge
 - Possibly limited ability to infer, but
 - Vast storehouse of relevant knowledge, indexed in an easy-to-apply form
Cancer Test

- We discover a cheap, 95% accurate test for cancer.
- Give it to “Mrs. Jones”, the next person who walks by 77 Mass Ave.
- Result is positive.
- What is the probability that Mrs. Jones has cancer?

Figuring out Cancer Probability

Assume Ca in 1% of general population:

\[
\frac{950}{950 + 4950} = .161
\]

At the Extremes

- If Ca probability in population is 0.1%,
 – Then post positive result, p(Ca)=1.87%
- If Ca probability in population is 50%,
 – Then post-positive result, p(Ca)=95%

Bayes’ Rule

\[
P(D | T) = \frac{P(D)P(T | D)}{P(D)P(T | D) + P(D)P(T | \bar{D})}
\]
Odds/Likelihood Form

\[P(D \mid T) = \frac{P(D)P(T \mid D)}{P(D)P(T \mid D) + P(\overline{D})P(T \mid \overline{D})} \]

\[P(\overline{D} \mid T) = \frac{P(\overline{D})P(T \mid \overline{D})}{P(D)P(T \mid D) + P(\overline{D})P(T \mid \overline{D})} \]

\[\frac{P(D \mid T)}{P(\overline{D} \mid T)} = \frac{P(D)}{P(\overline{D})} \cdot \frac{P(T \mid D)}{P(T \mid \overline{D})} \]

\[O(D \mid T) = O(D)L(T \mid D) \]

\[W(D \mid T) = W(D) + W(T \mid D) \]

DeDombal, et al. Experience 1970’s & 80’s

- “Idiot Bayes” for appendicitis
- 1. Based on expert estimates -- lousy
- 2. Statistics -- better than docs
- 3. Different hospital -- lousy again
- 4. Retrained on local statistics -- good

Rationality

- Behavior is a continued sequence of choices, interspersed by the world’s responses
- Best action is to make the choice with the greatest expected value
- ... decision analysis

Example: Gangrene

- From Pauker’s “Decision Analysis Service” at New England Medical Center Hospital, late 1970’s.
- Man with gangrene of foot
- Choose to amputate foot or treat medically
- If medical treatment fails, patient may die or may have to amputate whole leg.
- What to do? How to reason about it?
Decision Analysis: Evaluating Decision Trees

- Outcome: directly estimate value
- Decision: value is that of the choice with the greatest expected value
- Chance: expected value is sum of (probabilities x values of results)
- “Fold back” from outcomes to current decision.
- Sensitivity analyses often more important than result(!)

HELP System uses D.A.

[Diagram of Decision Tree for Gangrene]

[Diagram of Evaluating the Decision Tree]
Utility Analysis of Appendectomy

PROB OF APPENDICITIS

A APPENDICITIS BY HISTORY
B REBOUND TENDERNESS IN RLQ
C PRIOR APPENDECTOMY
D IF C THEN EXIT
E WHITE BLOOD COUNT (WBCx100) TH/M3, LAST
F PROB B A 620 90
G PROB F 43 18 9, 74 23 7, 93 18 11,
 108 10 11, 121 16 13, 134 6 16, 151
 5 16, 176 4 14
FVAL G

UTILITY OF APPENDECTOMY IS ESTIMATED AS $----

A (A) AGE
B SEX
C (A) SALARY, GET A/365
D JOB, PERCENT ACTIVITY NEEDED
E LE A,B
F DLOS D 30 1, 65 2, 80 4, 90 1, 100 – 0
G DLOS D 40 1, 80 4, 95 5, 100 – 0 ...
I COND E, F, 7, 1800, 0, C
J COND E, G, 1, 900, 0, C ...
M PROB OF APPENDICITIS
N UTIL M, I, J, K, L
O IF N LT 0, EXIT
FVAL N

“Paint the Blackboards!”

DECISION PATIENT STATE UTILITY

Disease (p) Treat disease
No disease (1-p) Treat no disease

No treat No disease (1-p) No treat no disease
Threshold

- Benefit $B = U(\text{treat dis}) - U(\text{no treat dis})$
- Cost $C = U(\text{no treat no dis}) - U(\text{treat no dis})$
- Threshold probability for treatment:

$$T = \frac{1}{\frac{B}{C} + 1}$$

Pauker, Kassirer, NEJM 1975

Test/Treat Threshold

Pauker, Kassirer, NEJM 1980

Visualizing Thresholds

More Complex Decision Analysis Issues

- Repeated decisions
- Accumulating disutilities
- Dependence on history
- Cohorts & state transition models
- Explicit models of time
- Uncertainty in the uncertainties
- Determining utilities
 - Lotteries, ...
- Qualitative models
Example: Acute Renal Failure

- Choice of a handful (8) of therapies (antibiotics, steroids, surgery, etc.)
- Choice of a handful (3) of invasive tests (biopsies, IVP, etc.)
- Choice of 27 diagnostic “questions” (patient characteristics, history, lab values, etc.)
- Underlying cause is one of 14 diseases
 - We assume one and only one disease

Decision Tree for ARF

- Choose:
 - Surgery for obstruction
 - Treat with antibiotics
 - Perform pyelogram
 - Perform arteriography
 - Measure patient’s temperature
 - Determine if there is proteinuria
 - ...
ARF’s Database: P(obs|D)

<table>
<thead>
<tr>
<th>Diseases</th>
<th>Proteinuria</th>
<th>Probabilities</th>
<th>0</th>
<th>2+</th>
<th>4+</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATN</td>
<td></td>
<td></td>
<td>0.1</td>
<td>0.8</td>
<td>0.1</td>
</tr>
<tr>
<td>FARM</td>
<td></td>
<td></td>
<td>0.8</td>
<td>0.2</td>
<td>0.001</td>
</tr>
<tr>
<td>OBSTR</td>
<td></td>
<td></td>
<td>0.7</td>
<td>0.3</td>
<td>0.001</td>
</tr>
<tr>
<td>AGN</td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>CN</td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.8</td>
<td>0.2</td>
</tr>
<tr>
<td>HS</td>
<td></td>
<td></td>
<td>0.8</td>
<td>0.2</td>
<td>0.001</td>
</tr>
<tr>
<td>PYE</td>
<td></td>
<td></td>
<td>0.4</td>
<td>0.6</td>
<td>0.001</td>
</tr>
<tr>
<td>AE</td>
<td></td>
<td></td>
<td>0.1</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>RI</td>
<td></td>
<td></td>
<td>0.1</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>RVT</td>
<td></td>
<td></td>
<td>0.001</td>
<td>0.1</td>
<td>0.9</td>
</tr>
<tr>
<td>VASC</td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>SCL</td>
<td></td>
<td></td>
<td>0.1</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>CGAE</td>
<td></td>
<td></td>
<td>0.001</td>
<td>0.2</td>
<td>0.8</td>
</tr>
<tr>
<td>MH</td>
<td></td>
<td></td>
<td>0.001</td>
<td>0.4</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Questions

- Blood pressure at onset
- proteinuria
- casts in urine sediment
- hematuria
- history of prolonged hypotension
- urine specific gravity
- large fluid loss preceding onset
- kidney size
- urine sodium
- strep infection within three weeks
- urine volume
- recent surgery or trauma
- age
- papilledema
- flank pain

Initial probability distribution

- ATN Acute tubular necrosis 0.250
- FARM Functional acute renal failure 0.400
- OBSTR Urinary tract obstruction 0.100
- AGN Acute glomerulonephritis 0.100
- CN Renal cortical necrosis 0.020
- HS Hepatorenal syndrome 0.005
- PYE Pyelonephritis 0.010
- AE Atheromatous Emboli 0.003
- RI Renal infarction (bilateral) 0.002
- RVT Renal vein thrombosis 0.002
- VASC Renal vasculitis 0.050
- SCL Scleroderma 0.002
- CGAE Chronic glomerulonephritis, acute exacerbation 0.030
- MH Malignant hypertension & nephrosclerosis 0.030
Invasive tests and treatments

- Tests
 - biopsy
 - retrograde pyelography
 - transfemoral arteriography

- Treatments
 - steroids
 - conservative therapy
 - iv-fluids
 - surgery for urinary tract obstruction
 - antibiotics
 - surgery for clot in renal vessels
 - antihypertensive drugs
 - heparin

Updating probability distribution

\[P_{i+1}(D_j) = \frac{P_i(D_j)P(S|D_j)}{\sum_{k=1}^{n} P_i(D_k)P(S|D_k)} \]

Bayes’ rule

Value of treatment

- Three results: improved, unchanged, worsened
 - each has an innate value, modified by “tolls” paid on the way

- Probabilities depend on underlying disease probability distribution

Modeling treatment

<table>
<thead>
<tr>
<th>Steroids</th>
<th>improved</th>
<th>unchanged</th>
<th>worse</th>
</tr>
</thead>
<tbody>
<tr>
<td>th</td>
<td>0.60</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>farf</td>
<td>0.05</td>
<td>0.35</td>
<td>0.60</td>
</tr>
<tr>
<td>obstr</td>
<td>0.05</td>
<td>0.60</td>
<td>0.35</td>
</tr>
<tr>
<td>agn</td>
<td>0.40</td>
<td>0.40</td>
<td>0.20</td>
</tr>
<tr>
<td>cn</td>
<td>0.05</td>
<td>0.75</td>
<td>0.20</td>
</tr>
<tr>
<td>hs</td>
<td>0.05</td>
<td>0.05</td>
<td>0.90</td>
</tr>
<tr>
<td>pye</td>
<td>0.05</td>
<td>0.05</td>
<td>0.90</td>
</tr>
<tr>
<td>ae</td>
<td>0.05</td>
<td>0.70</td>
<td>0.25</td>
</tr>
<tr>
<td>ri</td>
<td>0.01</td>
<td>0.14</td>
<td>0.85</td>
</tr>
<tr>
<td>rvt</td>
<td>0.10</td>
<td>0.30</td>
<td>0.60</td>
</tr>
<tr>
<td>vasc</td>
<td>0.15</td>
<td>0.25</td>
<td>0.60</td>
</tr>
<tr>
<td>scl</td>
<td>0.05</td>
<td>0.05</td>
<td>0.90</td>
</tr>
<tr>
<td>cgae</td>
<td>0.40</td>
<td>0.35</td>
<td>0.25</td>
</tr>
<tr>
<td>mh</td>
<td>0.05</td>
<td>0.05</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Utilities:
- improved: 5000
- unchanged: -2500
- worse: -5000
Modeling test: transfemoral arteriography

<table>
<thead>
<tr>
<th>p(clot)</th>
<th>cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>atn</td>
<td>0.01</td>
</tr>
<tr>
<td>farf</td>
<td>0.01</td>
</tr>
<tr>
<td>obstr</td>
<td>0.01</td>
</tr>
<tr>
<td>agn</td>
<td>0.01</td>
</tr>
<tr>
<td>cn</td>
<td>0.01</td>
</tr>
<tr>
<td>hs</td>
<td>0.01</td>
</tr>
<tr>
<td>pye</td>
<td>0.01</td>
</tr>
<tr>
<td>ae</td>
<td>0.03</td>
</tr>
<tr>
<td>ri</td>
<td>0.85</td>
</tr>
<tr>
<td>rvf</td>
<td>0.50</td>
</tr>
<tr>
<td>vasc</td>
<td>0.01</td>
</tr>
<tr>
<td>scl</td>
<td>0.01</td>
</tr>
<tr>
<td>cgaee</td>
<td>0.01</td>
</tr>
<tr>
<td>mh</td>
<td>0.01</td>
</tr>
</tbody>
</table>

How large is the tree?

- Infinite, or at least $(27+3+8)^{(27+3+8)} \approx 10^{60}$
- What can we do?
 - Assume any action is done only once
 - Order:
 • questions
 • tests
 • treatments
- $27! \times 4 \times 3 \times 2 \times 8, \approx 10^{30}$
- Search, with a *myopic evaluation function*
 - like game-tree search; what’s the static evaluator?
 - Measure of certainty in the probability distribution

How many questions needed?

- How many items can you distinguish by asking 20 (binary) questions? 2^{20}
- How many questions do you need to ask to distinguish among n items? $\log_2(n)$
- *Entropy* of a probability distribution is a measure of how certainly the distribution identifies a single answer; or how many more questions are needed to identify it

Entropy of a distribution

$$H_i(p_1, \ldots, p_n) = \sum_{j=1}^{n} p_j \log_2 p_j$$

For example:

- $H(.5, .5) = 1.0$
- $H(.1, .9) = 0.47$
- $H(.01, .99) = 0.08$
- $H(.001, .999) = 0.01$
- $H(.33, .33, .33) = 1.58$ (!)
- $H(.005, .455, .5) = 1.04$
- $H(.005, .995, 0) = 0.045$

(!) -- should use \log_n
Interacting with ARF in 1973

Question 1: What is the patient's age?
1 0-10
2 11-30
3 31-50
4 51-70
5 Over 70
Reply: 5

The current distribution is:
Disease Probability
FARF 0.58
IBSTR 0.22
ATN 0.09

Question 2: What is the patient's sex?
1 Male
2 Pregnant Female
3 Non-pregnant Female
Reply: 1

Local Sensitivity Analysis

Case-specific Likelihood Ratios
Therapy Planning Based on Utilities

Assumptions in ARF

- Exhaustive, mutually exclusive set of diseases
- Conditional independence of all questions, tests, and treatments
- Cumulative (additive) disutilities of tests and treatments
- Questions have no modeled disutility, but we choose to minimize the number asked anyway