Modern nFET device, $L_g=40$ nm
Equivalent Oxide Thickness (EOT) = 1 nm*

Actually, this has a high dielectric constant gate oxide (HfO_2**)
(Intel 45-nm CMOS)

* Note: EOT is 1 nm, but the effective gate capacitor equivalent thickness (CET) is 1.3 nm because quantum effects in the channel push the charge centroid away from the physical interface.

** The relative dielectric constant of hafnium oxide is 25 (vs 3.9 for SiO$_2$).

Simulations courtesy of Professor Dimitri Antoniadis, MIT
Output family, i_D-v_{DS} w. v_{GS} incremented

- Notice the more evenly spaced family of curves
- Notice also the more abrupt saturation of i_D. In the absence of velocity saturation the onset of the FAR is at $v_{DS} = v_{GS} - V_T$, and the onset would be at 0.75 V when $v_{GS} = 1V$ ($V_T = 0.25 V$). Here it is $\approx 0.4 V$.
- The finite output conductance is due to Drain-Induced Barrier Lowering (DIBL, δ), whereby V_T depends (linearly) on V_{DS}, i.e. $V_T = V_{To} - \delta v_{DS}$.
Transfer Characteristics, $i_D - V_{GS}$ (Log Plot)

Shift of V_T: DIBL, $\delta = 0.12 \, \text{V} / 0.095 \, \text{V} = 126 \, \text{mV/V}$
Transfer Characteristic, $i_D - V_{GS}$

(Linear plot)

$V_{DS} = 1 \text{ V}$

$V_{DS} = 0.05 \text{ V}$
Drain induced barrier lowering, δ

Shift of V_T : DIBL, $\delta = 0.12 \text{ V}/0.095 \text{ V} = 126 \text{ mV/V}$
Sub-threshold slope and n

Subthreshold slope: 10^5 in 500 mV = 100 mV/decade

$n = 100/60 = 1.67$
Transconductance, \(g_m = \frac{di_D}{dv_{GS}} \)

Slope = \(\frac{g_m}{W} = \frac{d(i_D/W)}{dv_{GS}} = \frac{1.5}{0.6} = 2.5 \text{ mA/V-µm} \)

Model: \(\frac{g_m}{W} = C_{ox}^* s_{sat} = 2.5 \times 10^{-6} \times 10^7 = 2.5 \text{ mA/V-µm} \)
The finite output conductance, g_o, is due to Drain-Induced Barrier Lowering (DIBL), whereby the V_T depends (linearly) on V_{DS}: $V_T = V_{To} - \delta \cdot v_{DS}$.

Theoretically, g_o should be $C_{ox}^* \cdot W \cdot s_{sat} \cdot \delta$. This is independent of v_{GS} so all of the curves should parallel in saturation, and this is clearly seen in the figure.

The slope of the orange lines is ≈ 0.3 mA/V-µm. Using $C_{ox}^* = 2.5 \times 10^{-6}$ Coul/V-cm², $s_{sat} \approx 10^7$ cm/s, and $\delta = 126$ mV/V, we calculate $g_o/W = 0.315$ mA/V-µm.