6.012 R#9. MOS capacitors

Last time we discussed the various regimes of a MOS structure. (see below) Previously.

Today we will focus on the charge at the interface and derive the capacitance associated with the various regimes.

1. "Delta - Depletion Approximation":
 \[\phi_s \approx \phi_s' = -\phi_p \quad \text{for} \quad V_{GB} > V_T \]

2. Some detail analysis for the Inversion regime:
 \[V_{GB} + \phi_0 = V_{ox} + V_B \quad (\phi_0 = -V_{FB} \quad V_B = -2\phi_p) \]
 \[V_{GB} - V_{FB} = V_{ox} - 2\phi_p \]
 \[V_{ox} = E_{ox} \cdot t_{ox} = -\left(\frac{q_{t,B} + q_{B,\max}}{E_{ox} \cdot t_{ox}}\right) \]
 \[E(0) = \frac{-(q_{t,B} + q_{B,\max})}{\varepsilon_S} = E_{ox} \left(\frac{E_{ox} \cdot t_{ox}}{\varepsilon_S}\right) = \frac{E_{ox}}{3} \]
In inversion, there is a 2nd discontinuity in the electric field, due to the inversion layer:

\[E(0^+) = -\frac{Q_{B,\text{max}}}{\varepsilon_S} = E(0) \left(-\frac{Q_N}{\varepsilon_S} \right) \]

\[V_{GB} - V_{FB} = V_{ox} - 2\phi_p = -\frac{(Q_{B,\text{max}} + Q_N)}{C_{ox}} - 2\phi_p \]

\[Q_N = -C_{ox} \left(V_{GB} - V_{FB} + 2\phi_p - \frac{Q_{B,\text{max}}}{C_{ox}} \right) = -C_{ox} (V_{GB} - V_T) \]

3. Summary for Gate charge: (p-type substrate)

\[Q_G = C_{ox} (V_{GB} - V_{FB}) \quad \text{for} \quad V_{GB} \leq V_{FB} \quad (Accumulation) \]

\[Q_G = -Q_B (V_{GB}) = \frac{q N_A}{C_{ox}} x_D = \frac{C_{ox}}{C_{ox}} \left(\frac{q N_A}{C_{ox}} \right) \left(\sqrt{1 + \frac{2\varepsilon_S (V_{GB} - V_{FB})}{q N_A}} - 1 \right) \quad V_{FB} \leq V_{GB} \leq V_{T} \quad (Depletion) \]

\[Q_G = C_{ox} (V_{GB} - V_T) + \frac{q N_A}{C_{ox}} \left(\sqrt{1 + \frac{2\varepsilon_S (V_{T} - V_{FB})}{q N_A}} - 1 \right) \quad \text{for} \quad V_{GB} \geq V_{T} \quad (Inversion) \]

If we plot,

4. Capacitance of the MOS structure: \(C_{gb}(V_{GB}) = A \cdot \frac{\partial Q_G}{\partial V_{GB}} \bigg|_{V_{GB}} \)

\(Q_G = \frac{q N_A}{C_{ox}} x_D \quad x_D = \frac{E_S}{C_{ox}} \left(\sqrt{1 + \frac{2\varepsilon_S (V_{GB} - V_{FB})}{q N_A}} - 1 \right) \)

(1) Accumulation: \(Q_G = C_{ox} (V_{GB} - V_{FB}) \)

\[C_{gb} = A \cdot C_{ox} \]

just like a parallel plate capacitor

(2) Depletion regime: \(Q_G = \frac{q N_A}{C_{ox}} x_D \quad x_D = \frac{E_S}{C_{ox}} \left(\sqrt{1 + \frac{2\varepsilon_S (V_{GB} - V_{FB})}{q N_A}} - 1 \right) \)

we can obtain \(C_{gb} \) by doing derivative, but an easier way of understanding this picture is:
two capacitor in series: \[\frac{1}{C_{tot}} = \frac{1}{C_{ox}} + \frac{1}{C_{dp}} \]

As \(V_{GB} \) goes more positive, \(x_D \uparrow, C_{dp} \downarrow, \Rightarrow C_{tot} \downarrow \)
when \(x_D \) reaches its maximum, \(x_{DT}, C_{tot} \) reaches its minimum

\[x_{DT} = \sqrt{\frac{2E_{si}(-2q_p)}{q-N_A p}} \]

\[C_{d, min} = \frac{E_{si}}{x_{DT}} \cdot A \]

\[Q_g = |C_{ox}(V_{GB} - V_T)| + |Q_{B, max}| \]

\[C_{gb} = \frac{\Delta Q_g}{\Delta V_{GB}} \bigg|_{V_{GB}} = C_{ox} \]

Discussions:

1. \(p^+ \) gate & \(p^- \) substrate?

2. \(p^+ \) gate & \(n^- \) substrate?

3. \(n^+ \) gate & \(n^- \) substrate?
Backgate effect: p-type substrate, n+ source & drain

\(V_{CB} \) needs to be positive, \(V_{CB} > 0 \) so p-n+ junction won't conduct.

Apply \(V_{CB} \), reverse bias the p-n+ junction, depletion layer will widen. \(\times \theta \), also \(V_B \) changes from \(-2\phi_p\) to \(-2\phi_p + V_{CB}\).

Previously,
\[
V_T = V_{FB} - 2\phi_p + \frac{1}{\text{Cox}} \sqrt{2\varepsilon_i \text{q} N_A (2\phi_p)}
\]

New
\[
V_T = V_{FB} - 2\phi_p + V_{CB} + \frac{1}{\text{Cox}} \sqrt{2\varepsilon_i \text{q} N_A (2\phi_p + V_{CB})}
\]
effectively, \(V_T \) \(\alpha \) when a positive \(V_{CB} \) is applied.