object models: relations

Daniel Jackson
relationship

kinds of relation
› property
› containment
› association
› naming

a ‘homogeneous’ or ‘recursive’ relation
does arrow direction matter?

some relations are symmetric
› \(a \rightarrow b \) in friend iff \(b \rightarrow a \) in friend

but for non-symmetric relation
› \(a \rightarrow b \) in \(r \) not same as \(b \rightarrow a \) in \(r \)

must define & implement direction consistently
› \(a \rightarrow b \) in invites : “a send an invitation to b”

and graphical notation may express constraint
› that depends on relation direction
relations on subsets

when you place a relation
› pick the smallest set

OK

better
multiplicity

how many?
› colors per shape?
› machines per IP?

\[A \xrightarrow{R} B \]

• \(R \) maps \(m \) A’s to each B
• \(R \) maps each A to \(n \) B’s

+ one or more
* zero or more
! exactly one
? at most one
omitted = *

- Shape \(\xrightarrow{\text{color}} \) Color
- Machine \(\xrightarrow{\text{ip}} \) IPAddress
- Directory \(\xrightarrow{\text{contains}} \) FSObject
- Course \(\xrightarrow{\text{enrolled}} \) Student
- User \(\xrightarrow{\text{friends}} \)
function properties

easily expressed with multiplicities

R is a function

R is a total function

R is an injection

R is a surjection

R is a bijection
common mistakes

#1. not a stateful relation
arrivesAt: Elevator -> Floor

#2. should be split into multiple relations
lines: Address -> AddressLine

#3. relates >2 atoms
lecturer: Student -> Faculty