LECTURE 17
Speculative Parallelism and Computer Chess

Charles E. Leiserson
November 8, 2012
SPECULATIVE PARALLELISM

SPEED LIMIT
PER ORDER OF 6.172
Thresholding a Sum

bool sum_exceeds(uint *A, size_t n, uint limit) {
 uint sum = 0;
 for (size_t i=0; i<n; ++i) {
 sum += A[i];
 }
 return sum > limit;
}
Optimization (Bentley rule)
Quit early if the partial product ever exceeds the threshold.

```c
bool sum_exceeds(uint *A, size_t n, uint limit) {
    uint sum = 0;
    for (size_t i=0; i<n; ++i) {
        sum += A[i];
        if (sum > limit) return true;
    }
    return false;
}
```
Thresholding a Sum in Parallel

```c++
bool sum_exceeds(uint *A, size_t n, uint limit) {
  uint sum;
  cilk::reducer< cilk::opadd<uint> > sum_r();
  cilk_for (size_t i=0; i<n; ++i) {
    *sum_r += A[i];
  }
  sum_r.move_out(sum);
  return sum > limit;
}
```

Question

How can we parallelize a short-circuited loop?
Divide-and-Conquer Loop

```c
uint sum_of(uint *A, size_t n) {
  if (n > 1) {
    uint s1 = cilk_spawn sum_of(A, n/2);
    uint s2 = sum_of(A + n/2, n - n/2);
    cilk_sync;
    uint sum = s1 + s2;
    return sum;
  }
  return A[0];
}

bool sum_exceeds(uint *A, size_t n, uint limit) {
  return sum_of(A, n) > limit;
}
```

How might we quit early and save work if the partial sum exceeds the threshold?
uint sum_of(uint *A, size_t n, uint limit, bool *abort_flag) {
 if (*abort_flag) return 0;
 if (n > 1) {
 uint s1 = cilk_spawn sum_of(A, n/2, limit, abort_flag);
 uint s2 = sum_of(A + n/2, n - n/2, limit, abort_flag);
 cilk_sync;
 uint sum = s1 + s2;
 if (sum > limit && !*abort_flag) *abort_flag = true;
 return sum;
 }
 return A[0];
}

bool sum_exceeds(uint *A, size_t n, uint limit) {
 bool abort_flag = false;
 return sum_of(A, n, limit, &abort_flag);
}

Notes:
- **Beware**: nondeterministic code!
- The benign race on abort_flag can cause true-sharing contention if you are not careful.
- Don’t forget to reset abort_flag after use!
- Is a memory fence necessary? **No!**
Definition. Speculative parallelism occurs when a program spawns some parallel work that might not be performed in a serial execution.

Rule of Thumb: Don’t spawn speculative work unless there is little other opportunity for parallelism and there is a good chance it will be needed.
Analysis of Speculative Parallelism

Theorem. Suppose that a program contains two parts A and B, and that after A executes, the probability is α that we need to execute B. Assuming a worst-case greedy scheduler, it cannot be worthwhile to speculate on B if the parallel slackness of B exceeds $\alpha/(1-\alpha)$.

Proof. Let P be the number of processors, let $T_P = (A_1 + B_1)/P + \max\{A_\infty, B_\infty\}$ be the time for the speculative execution, and let $T'_P = (A_1 + \alpha B_1)/P + A_\infty + \alpha B_\infty$ be the expected time for executing A and B (if necessary) in series. Then we have

\[
T_P = (A_1 + B_1)/P + \max\{A_\infty, B_\infty\} \\
= (A_1 + \alpha B_1)/P + (1-\alpha)B_1/P + A_\infty + B_\infty - \min\{A_\infty, B_\infty\} \\
= T'_P + (1-\alpha)B_1/P + (1-\alpha)B_\infty - \min\{A_\infty, B_\infty\} \\
= T'_P + (1-\alpha)B_1/P + B_\infty - \alpha B_\infty - \min\{A_\infty, B_\infty\} \\
\geq T'_P + (1-\alpha)B_1/P - \alpha B_\infty \\
> T'_P
\]

if $(1-\alpha)B_1/P > \alpha B_\infty$, or equivalently, if $B_1/\alpha P B_\infty > \alpha/(1-\alpha)$. ■
Cilk Abort Library

IDEA: Poll up the cactus stack to see whether any internal node desires an abort.
ALPHA–BETA SEARCH
Min–Max Search

- Two players: MAX ■ and MIN ●.
- The game tree represents all moves from the current position within a given search ply (depth).
- At leaves, apply a static evaluation function.
- MAX chooses the maximum score among its children.
- MIN chooses the minimum score among its children.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — **beta cutoff.**
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX's other children need not be searched — beta cutoff.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If **MAX** discovers a move so good that **MIN** would never allow that position, **MAX**’s other children need not be searched — **beta cutoff**.
Alpha–Beta Pruning

IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
Alpha–Beta Pruning

IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If \textbf{MAX} discovers a move so good that \textbf{MIN} would never allow that position, \textbf{MAX}'s other children need not be searched — \textbf{beta cutoff}.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
Alpha–Beta Strategy

- Each search from a node employs a window \([\alpha, \beta]\).
- If the value of the search falls below \(\alpha\), keep searching.
- If the value of the search falls between \(\alpha\) and \(\beta\), then increase \(\alpha\) and keep searching.
- If the value of the search falls above \(\beta\), generate a beta cutoff and return.
Code for Alpha–Beta Pruning

```c
int search( position *prev, int move, int depth ) {
    position cur;     /* Current position */
    int best_score = -INF;  /* Best score so far */
    int num_moves;    /* Number of children */
    int child_sc;     /* Child's score */

    make_move(prev, move, &cur);

    int sc = eval(&cur);     /* Static evaluation */
    if ( abs(sc)>=MATE || depth<=0 ) { /* Leaf node */
        return (sc);
    }

    cur.alpha = -prev->beta;  /* Negamax */
    cur.beta = -prev->alpha;
    ...
```

© 2012 Charles E. Leiserson and I–Ting Angelina Lee
Code for Alpha–Beta Pruning

// Generate moves, hopefully in best-first order
num_moves = gen_moves(&cur);

for (int mv = 0; mv < num_moves; ++mv) {
 child_sc = -search(&cur, mv, depth-1);
 if (child_sc > best_score)
 best_score = child_sc;
 if (child_sc >= cur.beta) /* beta cutoff */
 break;
 if (child_sc >= cur.alpha)
 cur.alpha = child_sc;
}
return best_score;
}
Theorem [KM75]. For a game tree with branching factor b and depth d, an alpha–beta search with moves searched in best–first order examines exactly $b^{\lceil d/2 \rceil} + b^{\lfloor d/2 \rfloor} - 1$ nodes at ply d.

The naive algorithm examines b^d nodes at ply d. For the same work, the search depth is effectively doubled. For the same depth, the work is square–rooted.
Opening Book

- Precompute best moves at the beginning of the game.
- The [KM75] theorem implies that it is cheaper to keep separate opening books for each side than to keep one opening book for both.
Iterative Deepening

- Rather than searching the game tree to a given depth d, search it successively to depths $1, 2, 3, \ldots, d$.
- With each search, the work grows exponentially, and thus the total work is only a constant factor more than searching depth d alone.
- During the search for depth k, keep move-ordering information to improve the effectiveness of alpha-beta during search $k+1$.
- Good mechanism for time control.
Observation: In a best–ordered tree, the degree of every node is either 1 or maximal.

IDEA [FMM91]: If the first child fails to generate a beta cutoff, speculate that the remaining children can be searched in parallel without wasting work: “Young Siblings Wait.” Abort subcomputations that prove to be unnecessary.
COMPUTER–CHESS PROGRAMS
Quiescence Search

- Evaluating at a fixed depth can leave a board position in the middle of a capture exchange.
- At a “leaf” node, continue the search using only captures — quiet the position.
Null–Move Pruning

- In most positions, there is always something better to do than nothing.
- Forfeit the current player’s move (illegal in chess), and search to a shallower depth.
- If a beta cutoff is generated, assume that a full–depth search would have also generated the cutoff.
- Otherwise, perform a full–depth search of the moves.
- Watch out for zugzwang!
Other Search Heuristics

- Killers
 - The same good move at a given depth tends to generate cutoffs elsewhere in the tree.
- Move extensions — grant an extra ply to the search if
 - the King is in check,
 - certain captures,
 - singular (forced) moves.
- Zero-window search — a variant of alpha–beta, where $\text{alpha} = \text{beta}$.
Transposition Table

- The search tree is actually a dag!
- If you’ve searched a position to a given depth before, memoize it in a hash table (actually a cache), and don’t search it again.
- Store the best move from the position to improve alpha-beta and minimize wasted work in parallel alpha-beta.
- Tradeoff between how much information to keep per entry and the number of entries.
Zobrist Hashing

- For each square on the board and each different state of a square, generate a random string.
- The hash of a board position is the XOR of the random strings corresponding to the states of the squares.
- Because XOR is its own inverse, the hash of the position after a move can be accomplished incrementally by a few XOR’s, rather than by computing the entire hash function from scratch.
Board Representation

- Bitboards
 - Use a 64-bit word to represent, for example, where all the pawns are on the 64 squares of the board.
 - Use POPCOUNT and other bit tricks to do move generation and to implement other chess concepts.
Final–Project Preview

- Performance–engineer a computer program to play Leiserchess (like chess, but with lasers).
- 3–person teams, each sharing a 12–core computer with another team.
- 2 betas plus a final.
Guest Lecture

Don Dailey
Chess-Programming Wizard

Tuesday in class
November 13, 2012