Dynamic Programming

Dynamic Programming (DP) is used heavily in optimization problems (finding the maximum and the minimum of something). Applications range from financial models and operation research to biology and basic algorithm research. So the good news is understanding DP is profitable. However, the bad news is that DP is not an algorithm or a data structure that you can memorize. It is a powerful algorithmic design technique.

Optimal Sub-structure

DP takes the advantage of the optimal sub-structure of a problem. A problem has an optimal sub-structure if the optimum answer to the problem contains optimum answer to smaller sub-problems. As an example, the shortest path from \(u \) to \(v \) is composed of some edge \((w, v)\) and the shortest path from \(u \) to \(w \) (a smaller problem to solve).

Review: Memoized Recursive and Bottom-up DP

Dynamic Programming can be framed as a memoized recursive algorithm or as a bottom-up iterative algorithm.

Memoized Recursive

To turn a normal recursive algorithm into a memoized recursive algorithm, we add a memo dictionary to store outputs for each input combination (subproblem) we’ve solved so far. To solve a subproblem that’s not in the memo, we just run our original recursive algorithm and then store the result in memo.

Our Fibonacci example from lecture:

```python
1  def fib(n):
2      # Check if we’ve already solve the subproblem
3      if n in memo: return memo[n]
4      # Normal recursive algorithm
5      if n <= 2: f = 1
6      else: f = fib(n-1) + fib(n-2)
7      # Remember our solution for later
8      memo[n] = f
9      return f
```

Analysis Rather than attempting the complex analysis how the runtimes add up recursively, we instead separate out the problem into: (1) how many subproblems do we need to solve and (2) how long does each subproblem take to solve assuming constant lookup of its subproblems. This
makes sense, since we are just reordering the pieces of our recursive runtime to make them easier
to analyze. Our overall runtime thus becomes:

\[T = (# \text{subproblems}) \times (\text{time/subproblem}) \]

In our Fibonacci example, we thus get \(O(n) \) subproblems and \(O(1) \) to solve each subproblem
when we ignore the recursive costs, giving us \(O(n) \) total.

Bottom-Up

Often times it makes sense to avoid the recursive overhead involved in a recursive algorithm and
re-order how we solve the subproblems. Rather than letting the recursive algorithm solve the
subproblems on an on-demand basis, we can choose to build up our subproblems from the base
cases up, in such a way that every time we solve a subproblem any subproblems it refers to are
already solved. Finding such an ordering is equivalent to topologically sorting the DAG defined
by the dependencies of each subproblem.

Our Fibonacci example from lecture becomes:

```python
1 def fib_bottom_up(n):
2     fib = {}
3     for k in range(n):
4         # Our original recursive solution. Notice that our ‘recursive’ calls are now lookups
5         if k <= 2: f = 1
6         else: f = fib[k-1] + fib[k-2]
7         fib[k] = f
8     return fib[n]
```

Analysis Our analysis is exactly the same as the memoized recursion, though in this case it’s
much clearer from where the runtime arises.

Trade-offs

There are advantages and disadvantages to both types of DP.

Advantages to Recursive Memoized:

- Often much clearer to understand
- Don’t have to determine an ordering, which might be hard to do manually in some cases

Advantages to Bottom-Up:

- Don’t have the overhead of recursion (we also avoid the issue of exceeding the maximum
 recursion depth)
- Could be simpler to analyze runtime
Shortest Path with Dynamic Programming

The shortest path problem has an optimal sub-structure. Suppose \(s \leadsto u \leadsto v \) is a shortest path from \(s \) to \(v \). This implies that \(s \leadsto u \) is a shortest path from \(s \) to \(u \), and this can be proven by contradiction. If there is a shorter path between \(s \) and \(u \), we can replace \(s \leadsto u \) with the shorter path in \(s \leadsto u \leadsto v \), and this would yield a better path between \(s \) and \(v \). But we assumed that \(s \leadsto u \leadsto v \) is a shortest path between \(s \) and \(v \), so have a contradiction.

Based on this optimal sub-structure, we can write down the recursive formulation of the single source shortest path problem as the following:

\[
\delta(s, v) = \min \{\delta(s, u) + w(u, v) | (u, v) \in E\}
\]

DAG

For a DAG, we can directly use memoized DP algorithm to solve this problem. The following is the Python code:

```python
class ShortestPathResult(object):
    def __init__(self):
        self.d = {}
        self.parent = {}

def shortest_path(graph, s):
    '''Single source shortest paths using DP on a DAG.''
    result = ShortestPathResult()
    result.d[s] = 0
    result.parent[s] = None
    for v in graph.itervertices():
        sp_dp(graph, v, result)
    return result

def sp_dp(graph, v, result):
    '''Recursion on finding the shortest path to v.''
    if v in result.d:
        return result.d[v]
    result.d[v] = float('inf')
    result.parent[v] = None
```
for u in graph.inverse_neighbors(v): # Theta(indegree(v))
 new_distance = sp_dp(graph, u, result) + graph.weight(u, v)
 if new_distance < result.d[v]:
 result.d[v] = new_distance
 result.parent[v] = u
return result.d[v]

The total running time of DP = number of subproblems × time per subproblem (ignoring recursion). In this case, the subproblem is represented by δ(s, v) which is parameterized by v because s is fixed. The number of possible values for v is |V|, so there are |V| subproblems. Each subproblem takes Θ(indegree(v) + 1) time. So the total time is Θ(∑_{v∈V} indegree(v) + 1) = Θ(E + V) by Handshaking Lemma.

For the bottom-up version, we need to topologically sort the vertices to find the right order to compute δ(s, v).

def shortest_path_bottomup(graph, s):
 '''Bottom-up DP for finding single source shortest paths on a DAG.'''
 order = topological_sort(graph)
 result = ShortestPathResult()
 for v in graph.itervertices():
 result.d[v] = float('inf')
 result.parent[v] = None
 result.d[s] = 0
 for v in order:
 for w in graph.neighbors(v):
 new_distance = result.d[v] + graph.weight(v, w)
 if result.d[w] > new_distance:
 result.d[w] = new_distance
 result.parent[w] = v
 return result

Graph with Cycles

In order for DP to work, the subproblem dependency should be acyclic, otherwise there will be infinite loops. We can create more subproblems to remove the cyclic dependencies. Let δ_k(s, v) be the shortest s → v path using ≤ k edges. Then we can redefine the recurrence as the following:

δ_k(s, v) = \min\{δ_{k-1}(s, u) + w(u, v)|(u, v) ∈ E}\)

The base cases are:

δ_0(s, v) = ∞ for v ≠ s
δ_k(s, s) = 0 for any k
If there are no negative cycles, \(\delta_{|V|-1}(s, v) = \delta(s, v) \).

We can visualize this as a graph transformation as well. Let \(G = (V, E) \) be a directed graph with cycles. For every \(v \in V \), make \(|V| \) copies of \(v \) as \(v_0, v_1, \ldots, v_{|V|-1} \) in the new graph \(G' \). For every edge \((u, v)\) \(\in E \), create an edge \((u_{k-1}, v_k)\) for \(k = 1, \ldots, |V| - 1 \) in \(G' \).

![Figure 1: Transforming a cyclic graph into an acyclic graph.](image-url)

```python
def shortest_path_cycle(graph, s):
    '''Single source shortest paths using DP on a graph with cycles but no
    negative cycles.''
    result = ShortestPathResult()
    num_vertices = graph.num_vertices()
    for i in range(num_vertices):
        result.d[(i, s)] = 0
        result.parent[(i, s)] = None
    for v in graph.itervertices():
        if v is not s:
            result.d[(0, v)] = float('inf')
    for v in graph.itervertices():
        sp_cycle_dp(graph, num_vertices - 1, v, result)

    d = {}
    parent = {}
    for v in graph.itervertices():
        d[v] = result.d[(num_vertices - 1, v)]
        parent[v] = result.parent[(num_vertices - 1, v)]
    result.d, result.parent = d, parent
    return result

def sp_cycle_dp(graph, k, v, result):
    '''Recursion on finding the shortest path to v with no more than k edges
    on a graph with cycles.''
    Arg:
        graph: weighted graph.
        k: kth level subproblem, i.e. finding paths with no more than k edges.
        v: a vertex in the graph.
```
result: for memoization and keeping track of the result.

```python
if (k, v) in result.d:
    return result.d[(k, v)]
result.d[(k, v)] = float('inf')
result.parent[(k, v)] = None
for u in graph.inverse_neighbors(v):
    new_distance = sp_cycle_dp(graph, k - 1, u, result) + graph.weight(u, v)
    if new_distance < result.d[(k, v)]:
        result.d[(k, v)] = new_distance
        result.parent[(k, v)] = u
    return result.d[(k, v)]
```

Crazy 8’s

In the game Crazy 8’s, we are given an input of a sequence of cards $C[0], \ldots, C[n-1]$, e.g., $7\clubsuit, 7\heartsuit, K\spadesuit, K\clubsuit, 8\heartsuit$. We want to find the longest subsequence of cards where consecutive cards must have the same value, same suit, or have one of the two cards be an eight. The longest such subsequence in the example is $7\clubsuit, K\spadesuit, K\clubsuit, 8\heartsuit$.

To solve this, if the cards are stored in array C, we will keep an auxiliary score array S where $S[i]$ represents the length of the longest subsequence ending with card $C[i]$.

We start with $S[0] = 1$ since the longest subsequence ending with the first card is that card itself and has a length of 1. We iteratively calculate the next score $S[i]$ by scanning all previous scores and set $S[i]$ to be $S[k] + 1$ where $S[k]$ represents the length of the longest subsequence that card $C[i]$ can be appended to.

Analysis For an input of n cards, there are $O(n)$ subproblems: $S[0], \ldots, S[n-1]$. Solving each subproblem requires iterating over all previous subproblems, for an $O(n)$ time per subproblem. Thus in total, our runtime is $O(n^2)$.