Today: Dynamic Programming IV (of 4)
- 2 kinds of guessing
- piano/guitar fingering (& DDR, RBVGH, ...)
- trees: longest path, carving, skills

* 5 easy steps to dynamic programming:
 1. define subproblems
 2. guess (part of solution)
 3. relate subprob. solutions
 4. recurse & memoize
 5. solve original problem: = a subproblem

* 2 kinds of guessing:
 A: in 1, guess which other subproblems to use
 (used by every DP except Fibonacci)
 (also sometimes used in 5)
 B: in 1, create more subproblems to guess/
 remember more structure of solution
 (used by knapsack DP)
 - effectively report many solutions to subprob.
 - lets parent subproblem know features of sol.
Piano/guitar fingering:

- Given musical piece to play, say sequence of n (single) notes with right hand
- Fingers $1, 2, \ldots, F=5$ for humans
- Metric $d(f, p, g, q)$ of difficulty going from note p with finger f to note q with finger g
 e.g. $1 < f < g$ & $p > q \Rightarrow$ uncomfortable stretch rule: $p \leq q \Rightarrow$ uncomfortable legato (smooth) $\Rightarrow \infty$ if $f=g$
 weak-finger rule: prefer to avoid $g \in \{4, 5\}$ 3\rightarrow4 & 4\rightarrow3 annoying \sim etc.

First attempt:

1. Subproblem $= \min$ difficulty for suffix notes[i:]
2. Guessing $= \text{finger } f \text{ for first note[i]}
3. Recurrence:

 $DP[i] = \min(DP[i+1] + d(\text{note[i]}, f, \text{note[i+1]}, ?))$ for f
Correct DP:

1. **subproblem** = min. difficulty for suffix notes[i:] starting with finger f on first note[i]
 \[\Rightarrow n \cdot F \] subproblems

2. **guessing** = finger g for next note[i+1]
 \[\Rightarrow F \] choices

3. **recurrence**:
 \[DP[i, f] = \min(DP[i+1, g] + d(note[i], f, note[i+1], g) \]
 for g in range(F) \]

 \[DP[n, f] = \emptyset \]
 \[\Rightarrow \Theta(F) \] time/subproblem

4. **topo. order**: for i in reversed(range(n)):
 - for f in 1, 2, ..., F:

 - total time: \(\Theta(nF^2) \)

5. **orig. prob.** = \[\min(DP[\emptyset, f] \] for f in 1, ..., F)
 (guessing very first finger)

DAG:

```
notes
```

```
fingers
```

```
difficulty
```
Guitar: up to S ways to play same note!
- redefine "finger" = finger playing note + string playing note

$\Rightarrow F \rightarrow F \cdot S$

Generalization: multiple notes at once (e.g. chords)
- input: $\text{notes}[i] = \text{list of } \leq F \text{ notes}$ (can't play >1 note with a finger)
- state we need to know about "past" now assignment of fingers to notes/null

$\Rightarrow (F+1)^F$ such mappings

1. $n \cdot (F+1)^F$ subproblems
2. $(F+1)^F$ choices (how $\text{notes}[i]$ is played)
3. $n \cdot (F+1)^{2F}$ total time

- works for 2 hands ($F=10$)
- just need to define appropriate d

Video games:
- Guitar Hero / Rock Band:
 just like piano/guitar ($F=4, 1$ string)
- Dance Dance Revolution:
 just like multifinger ($F=2$ feet)
We've seen lots of examples on ~ strings. Trees also often amenable to DP.

Longest simple path in a tree (NP-hard in general graphs)
- must be leaf to leaf
- in rooted tree, must go up then down
- transition where? Guess t ∈ V

1. subproblems = longest path from u ∈ V down to a leaf = h(u)
 - this is actually the height of node v
2. guess first edge (u,v) of path
3. recurrence: h(u) = \max(w(u,v) + h(v) for v in u.children)
4. order: post-order traversal
5. solution = \max(\text{sum of 2 max} (w(u,t) + h(t)) for u in t.children) for t in V)

- time: 3 & 5 cost \leq \sum_{t \in V} O(\# \text{children of } t) = O(n)

* for tree problems, good subproblem choice = rooted subtrees
Tree carving: [Gil&Itai 1999]

- goal: divide given rooted binary tree into subtrees of size $\leq B$ ("blocks") to minimize max./avg. # blocks visited by a root-to-leaf path.

- motivation: when fetching 1 node from disk \rightarrow memory or memory \rightarrow cache, usually get whole block of B nodes (containing requested node) for same cost.

~ so how to optimally store a given tree?

First attempt:

1. **Subproblem** = subtree rooted at node v
2. **guess**: which B nodes to put in root block (containing v)

- problem: $2^{\Theta(B)}$ choices

- so need to choose block node by node...
- after root node, have 2 subtrees contributing to root block
- essentially, have a resource (root block capacity) & need to divvy it up among children... by GUESSING!

[Diagram of a triangle with nodes and edges labeled B/2, or, or, or, with $\Theta(B)$ independent choices]
Correct DP:

1. **subproblems**: \(C(v, X) = \text{cost of subtree rooted at } v, \text{ given room for } X \text{ "free" nodes} \)
2. **guess**: how to split \(X-1 \) remaining free nodes among \(v \)'s children
3. **recurrence**:
 \[
 C(v, X) = \min_{Y > 0} \left(C(v, \text{left}, Y) \times C(v, \text{right}, X-1-Y) \right)\]
 max, or weighted avg. for \(Y \) in range({\(X\)})

 \[
 C(\text{None}, X) = \emptyset \\
 C(v, 0) = 1 + C(v, B)
 \]
4. **order**: for \(v \) in post-order traversal:
 for \(X = B, B-1, \ldots, 0 \) (need \(B \) before \(0 \))
5. **goal**: \(C(\text{root}, 0) \)

- **time**: \(nB \) subproblems \(\cdot \leq B \) guesses \(\cdot O(1) \) time/guess = \(O(nB^3) \leq O(n^3) \)

Extensions:
- **nonbinary tree**:
 - split high-degree node into binary tree
 - treat added nodes as free (\(X-Y\), no -1)
- faster, approximate DP algorithms:
 - \(O(nB) \) time, additive error \(\leq 1 \)
 - \(O(n) \) time, additive error \(\leq 1+\varepsilon \)

[Alstrup, Bender, Demaine, Farach-Colton, Rauhe, Thorup 2003]
Skill build tree: (MMOs, StarCraft, tower def,...)
- each node v costs $c(v) \in \{0, 1, \ldots, C\}$, has benefit $b(v) \in \mathbb{R}$, and limit $l(v)$ on # times it can be bought
- can only buy node if bought parent
- upgrade nodes: # purchases of node \leq # purchases of parent
- goal: maximize benefit with cost $\leq C$

1. subproblems: $\text{OPT}(v, X, l) = \max$ benefit on subtree rooted at v, with v buyable l times, given budget $X \in \{0, 1, \ldots, C\}$
2. guess: # times k to buy v & budget allocation Y for left child
3. recurrence: $\text{OPT}(v, X, l)$
 = \max (
 $\text{OPT}(v, \text{left}, Y, \{l \text{ if } v, \text{left} \text{ is upgrade} \}$,
 $\{l(v, \text{left}) \text{ else} \}$
 + $\text{OPT}(v, \text{right}, X-Y-k \cdot c(v), \{l \text{ if upgrade} \}$,
 $\{l(v, \text{right}) \text{ else} \}$
 + $k \cdot b(v)$
 for k in $1, 2, \ldots, l$
 for Y in $0, 1, \ldots, X-k \cdot c(v)$
)

$\text{OPT}(\text{None}, X, l) = \emptyset$
if no option

4. order: for v in post-order traversal:
 for X in $0, 1, \ldots, C$:
 for l in $0, 1, \ldots, l(v)$:

5. $\text{OPT}(\text{root}, C, l(\text{root}))$