Introduction to Algorithms

6.046J/18.410J

Prof. Shafi Goldwasser

LECTURE 5
Randomized Algorithms
Monte Carlo Algorithms (MC): Last Time

Let n be the length of the input.

For every input:

- MC runs in worst case polynomial Time
- MC is correct with high probability
 - Constant probability > $\frac{1}{2}$
Revisit Example:

Distinguishing Prime and Composite Numbers
Let N positive integer.

$\mathbb{Z}_N = \{0,1,2\ldots N-1\}$ under $+ \mod N$, identity = 0

$\mathbb{Z}_N^* = \{ A \mid 1 \leq A < N \text{ and } \gcd(A, N) = 1 \}$

under multiplication mod N, identity 1.

The inverse of A is x s.t. $Ax=1 \mod N$.

EX: $\mathbb{Z}_6^* = \{1,5\}$, **EX:** $\mathbb{Z}_7^* = \{1,\ldots,6\}$

Computing inverses: $O(n^2)$.

Given A in \mathbb{Z}_N^*, by definition $\gcd(A,N)=1$,

so extended-$\text{GCD}(A,N) = (1,x,y)$ s.t.

$xA+yN=1 \implies xA+yN=1 \mod N$. But, $yN=0 \mod N$,

so $xA=1 \mod N$ and $x=A^{-1} \mod N$.

Our Basic Groups
Lagrange

Theorem [Lagrange]: Let G is a group, H a subgroup of G. Then $|H|$ divides $|G|$.
(orders divide)
If \(N \) is prime, then \(\forall \) integer \(a \) s.t. \(1 \leq a \leq N-1 \),
\[a^{N-1} = 1 \pmod{N} \]

Fermat’s Little Theorem

Idea for primality test: On input \(N \), **look for** an \(1 \leq a \leq N-1 \), such that \(a^{N-1} \neq 1 \pmod{N} \). If find it, then \(N \) is NOT prime.

For example: let \(a=2 \) and test if
\[2^{14} \pmod{15} = ? 1 \]
\[2^{14} = 4 \pmod{15} \Rightarrow 15 \text{ is composite} \]
Unfortunately, Not an “If and only if”

$$\forall a, \ 1 \leq a \leq N-1 \ , \ a^{N-1} = 1 \pmod{N} \nRightarrow N \text{ is prime}$$

There are composite N (e.g. 561) for which $\forall a, \ a^{N-1} = 1 \pmod{N}$.
These are called **Carmichael Numbers**
and there are infinitely many of them.

(although they are rare – only 255 of them appear in the first 10^8 integers)
Fermat’s Probabilistic Primality Test (for non-Charmichael numbers N)

Fermat’s Primality Test (N>2 non-Charmichael)
Pick \(a \in \{1\ldots N-1\} \) at random
If \(\gcd(a,N) > 1 \), output “N is composite”
 if \(a^{N-1} \neq 1 \pmod{N} \),
 output “N is composite”
 else output “N probably prime”

Call such a, “witness of compositeness”

Easy Observations
Analysis: Runs in polynomial time
Correctness on N prime: always says ‘N probably prime’
Prob[error] = 0
Correctness on N composite (not Carmichael)

Theorem. If N is composite (not Carmichael) the probₐ(output ‘N probably prime’) ≤ 1/2.

Proof: Define B = \{ a ∈ Zₙ* | a^{N-1} = 1 (mod B) \}
B contains all the inputs which cause Fermat’s test to produce an error. It is a subgroup of Zₙ*

Closure: a^{N-1} = 1 (mod N), b^{N-1} = 1 (mod N) ⇒ (ab)^{N-1} = 1 (mod N)
Identity: 1^{N-1} = 1 (mod N)
Associativity: multiplication is associative
Inverses: a^{N-1} = 1 ⇒ (a^{N-1})^{-1} = 1 ⇒ (a^{-1})^{N-1} = 1 (mod N)

1/2 |Zₙ*| ≥ 1/2 (N-1).
Correctness on N composite (not Carmichael)

Theorem. If N is composite (not Carmichael) the \(\text{prob}_a(\text{output } `N \text{ probably prime'}) \leq 1/2. \)

Proof: Define \(B = \{ a \in \mathbb{Z}_N^* \mid a^{N-1} = 1 \text{ (mod } B) \} \)
B contains all the inputs which cause Fermat’s test to produce an error. It is a subgroup of \(\mathbb{Z}_N^* \)

Since \(N \) is neither prime nor Carmichael, \(B \neq \mathbb{Z}_N^* \) which means \(|B| < \text{(strictly smaller)} \ |\mathbb{Z}_N^*| \)

Finally: \(|B| \text{ divides } |\mathbb{Z}_n^*| \) \ (Lagrange’s theorem) \(\Rightarrow |B| \leq 1/2 \ |\mathbb{Z}_n^*| \leq 1/2 \ (N-1). \)
Boosting the Probability by repeating

Fermat’s primality test (N > 2 non Charmichael):

repeat \(k \) times

pick \(a \in \{1\ldots N - 1\} \) at random

if \(\gcd(a,N) > 1 \) output “N is composite”

if \(a^{N-1} \neq 1 \pmod{N} \) then

output “N is composite”

else output “N probably prime”,

Claim: if N is composite,

\[
\text{prob}[\text{output `N probably prime’ }] \leq (1/2)^k
\]
Nice warm up, but ultimately unsatisfactory – does not give guarantees for all inputs N.

We next see the “Miller-Rabin” algorithm Which will in addition detect **Carmichael** numbers

In your homework, you will design another general purpose primality test for all composite numbers.
Modular Square Roots Theorem

Theorem: If N is prime, then the equation $X^2 = 1 \mod N$ has only two solutions in \mathbb{Z}_N: $x = 1 \mod N$ and $x = -1 \mod N$.

Proof: Suppose a is such that $a^2 = 1 \mod N$. Then, $(a+1)(a-1) = a^2 - 1 = 0 \mod N$.

Since $(a+1)(a-1)$ is a multiple of N, and N is a prime, then either $(a+1)$ or $(a-1)$ is a multiple of N, which means that either $a = 1 \mod N$ or $a = -1 \mod N$.
Using the Theorem to get a Primality Test

New Idea for a Primality test:
On input N, look for a such that $a^2 \equiv 1 \text{ mod } N$ but $a \neq 1 \text{ (mod } N)$ and $a \neq -1 \text{ (mod } N)$.
If found it, then a is witness that N is composite

This will lead to the Miller-Rabin primality test which will work for all inputs N
Different Witnesses that N is non prime

An $1 < a < N$ such that either

1. $\gcd(a, N) > 1$ implies N has non trivial factors.

2. $a^{N-1} \neq 1 \mod N$ implies violation of Fermat’s theorem.

3. $a^2 = 1 \mod N$ but $a \neq 1, -1$ implies 1 has more than two square roots in Z_N^*.
How to Find Square Roots of 1 different from 1 and -1 mod N

• **Idea:** Take any \(a \) such that \(a^{N-1} \mod N = 1 \) (always when \(N \) is Carmichael numbers), and use this equation to find roots of 1 as follows

Write \(N-1 = 2^s t \) where \(t \) is odd. Compute successive square roots of 1

\[a^{N-1} \mod N, \ a^{(N-1)/2} \mod N, \ a^{(N-1)/4} \mod N, \ldots \ a^{(N-1)/2^s} \mod N \]

\[1' \quad 1' \quad 1' \quad 1 \quad \text{or} \quad x \neq 1, -1 \]

Must Prove: \(N \) Carmichael \(\Rightarrow \) \(\text{Prob}_a[\text{hit non } 1, -1 \text{ root}] > 1/2 \)
Miller Rabin Primality Test

- **Input**: \(N > 2 \) odd s.t. \(N - 1 = 2^t \) such that \(t \) is odd.

- **Output**: “probably prime” or “composite”
 - if \(N = a^b \), \(a, b > 1 \), output “composite” (found witness)
 - Choose random integer \(a, 1 < a \leq N - 1 \)
 - if \(\gcd(a, N) \neq 1 \), output `composite’ (found witness)
 - if \(a^{N-1} \neq 1 \) output `composite’ (found witness)
 - else compute the sequence \(a^{(N-1)/2}, \ldots, a^{(N-1)/2^S} \mod N \)
 - if \(\forall y \) in the sequence \(y = 1 \) or \(-1\), output “\(N \) probably prime”,
 - else output “\(N \) composite” (found witness)

Works unless \(N \) is a perfect power, test for perfect power.
Correctness

• If \(n \) is a prime, no matter how we choose \(a \), algorithm always says `probably prime’ since can never find \(a \) s.t. \(a^{N-1} \neq 1 \mod N \) or a non-trivial root of 1.

• If \(n \) is composite, need to prove there are many choices of \(a \) for which algorithm output `composite’

Show: \(\text{Prob}_a [\text{Output “composite”}] \geq 1/2 \)
Error Analysis: Fix composite N

• Consider the set B of bad choices of a such that Miller-Rabin say that N is prime when the random choice a is made

• We want to prove $B \leq (N-1)/2$. We do it by proving that B is always contained in a proper sub-group of \mathbb{Z}_N^* and therefore $|B| \leq 1/2|\mathbb{Z}_N^*|

$$B = \{ a: a^{N-1/2J} = +1 \mod N \ \forall J=1,...,s, \ OR \ a^{N-1} = +1 \mod N \ \& \ \exists J \leq s: a^{N-1/2J} = -1 \mod N \}$$
Size of B, first case: N is not a Charmichael number
(same analysis as for Fermat’s Test)

- There is some \(a \in \mathbb{Z}_N^* \) such that \(a^{N-1} \neq 1 \mod N \)

- Define the set \(G = \{ a \text{ s.t. } a^{N-1} = 1 \mod N \} \)
 This is a subgroup of \(\mathbb{Z}_N^* \) (check!) and it is a proper subgroup (N not Charmichael case).

As \(|G|\) divides \(|\mathbb{Z}_N^*|\) (Lagrange) and smaller than it, \(|G| \leq (N-1)/2\) and \(B \subseteq G \).
Size of B, second case: N is a Charmichael number (Harder)

Let \(N-1 = t 2^s \).

Consider the equations:
\[
x^{N-1} \mod N, \ x^{(N-1)/2} \mod N, \ x^{(N-1)/4} \mod N \ldots x^{(N-1)/2^s} \mod N
\]
Let \(u \) be the first exponent for which \(\exists x \ \text{s.t.} \ x^u \mod N = -1 \).

Claim 1: \(u \) exists (since \(t \) is odd and \((-1)^{(N-1)/2^s} = (-1)^t = -1\))

Claim 2: \(S^u = \{ a: a^u \mod N = -1 \text{ or } +1 \} \) is a proper subgroup of \(Z_N^* \) and \(B \subseteq S^u \)

Proof: \(S^u \) is a sub-group (check), \(B \subseteq S^u \) (check).

Need to show \(\exists w \notin S^u \) for it to be proper and thus at
\[
|S^u| \text{ most } 1/2 \text{ of } Z_N^*.
\]
\Rightarrow \text{Prob}(\ a \text{ chosen by algorithm in } B) \leq 1/2 \quad \text{QED}
Breaking News 2005: Primes is in P

- Manindra Agrawal, Neeraj Kayal, Nitin Saxena, India Institute of Technology, Kanpur:

 Actually, a De-randomization of a probabilistic Algorithm!
Las Vegas Randomized Algorithms

• Can generate uniformly at random an
 \(r \in \{0, \ldots, R\} \) (i.e flip coins)

• The running time on input \(x \), becomes a
 random variable \(Time(x, r) \) depending on \(r \)

• **Expected Polynomial Time** :
 \[
 T(n) = E_r[Time(x, r)] \text{ for any } x \text{ of length } n \text{ is bounded by a polynomial function in } n
 \]

• **Always correct** (for all input, prob (error)=0)
Ex 1: Quicksort

- Divide and conquer algorithm but the work is in divide rather than in combine.
- Sorts “in place” (like insertion sort, but not like merge sort).
- Very practical (with tuning).
Main Idea: Partition Around a Pivot

Quicksort an n-element array A:

Divide:

1. Pick a pivot element x in A
2. Partition the array into sub-arrays $L(\text{elements}<x)$, $E(\text{elements}=x)$, $G(\text{elements}>x)$

Conquer: Recursively sort sub-arrays L and G

Combine: Trivial.
How do you Choose a Pivot x?

Basic Quick Sort:

$x = A[1]$

Can Show: worst case $O(n^2)$ time

Randomized Quick Sort:

x is chosen at random from the array A

(recursively each time a random choice)

Show: Expected $O(n \log n)$ for all inputs.

Randomness gives us more control over runtime.
How to Partition: Idea

• **Partition an input sequence as follows:**
 – Remove, in turn, each element y from A and
 – Insert y into L, E or G, depending on the result of the comparison with the pivot x

• Each insertion and removal takes $O(1)$ time

• Thus, the partition step takes $O(n)$

• To do this in place: tricky code (in slides/book, skip in lecture)
Partitioning subroutine

\textbf{Partition}(A, p, r) \triangleright A[p \ldots r]

\texttt{x} \leftarrow A[p] \quad \triangleright \text{pivot} = A[p]

i \leftarrow p

\textbf{for} j \leftarrow p + 1 \textbf{to} r \\
\textbf{do if} A[j] \leq x \\
\quad \textbf{then} \quad i \leftarrow i + 1 \\
\quad \text{exchange} \ A[i] \leftrightarrow A[j]

exchange \ A[p] \leftrightarrow A[i]

\textbf{return} \ i

\textbf{Invariant:} \quad \begin{array}{|c|c|c|c|}
\hline
x & \leq x & \geq x & ? \\
\hline
p & i & j & r \\
\hline
\end{array}

Already looked at \quad \text{Not looked at yet}
Example of partitioning

```
6 10 13 5 8 3 2 11
```

\[i \quad j \]
Example of partitioning

\[\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
\end{array} \]

\[i \quad \rightarrow \quad j \]
Example of partitioning
Example of partitioning

\[
\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
6 & 5 & 13 & 10 & 8 & 3 & 2 & 11 \\
\end{array}
\]
Example of partitioning
Example of partitioning

<table>
<thead>
<tr>
<th>6</th>
<th>10</th>
<th>13</th>
<th>5</th>
<th>8</th>
<th>3</th>
<th>2</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>5</td>
<td>13</td>
<td>10</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>11</td>
</tr>
</tbody>
</table>

\[i \quad \rightarrow \quad j \]
Example of partitioning

6 10 13 5 8 3 2 11

6 5 13 10 8 3 2 11

6 5 3 10 8 13 2 11

\[i \quad j \]
Example of partitioning

\[
\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
6 & 5 & 13 & 10 & 8 & 3 & 2 & 11 \\
6 & 5 & 3 & 10 & 8 & 13 & 2 & 11 \\
\end{array}
\]
Example of partitioning
Example of partitioning

<table>
<thead>
<tr>
<th>6</th>
<th>10</th>
<th>13</th>
<th>5</th>
<th>8</th>
<th>3</th>
<th>2</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>5</td>
<td>13</td>
<td>10</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>8</td>
<td>13</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>13</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

i \rightarrow j
Example of partitioning

\[
\begin{array}{ccccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
6 & 5 & 13 & 10 & 8 & 3 & 2 & 11 \\
6 & 5 & 3 & 10 & 8 & 13 & 2 & 11 \\
6 & 5 & 3 & 2 & 8 & 13 & 10 & 11 \\
\end{array}
\]
Example of partitioning

6 10 13 5 8 3 2 11

6 5 13 10 8 3 2 11

6 5 3 10 8 13 2 11

6 5 3 2 8 13 10 11

2 5 3 6 8 13 10 11

i
Pseudocode for basic quicksort

QUICKSORT(A, i, j)
 if i < j
 then q ← PARTITION(A, i, j)
 QUICKSORT(A, i, q–1)
 QUICKSORT(A, q+1, j)

Initial call: QUICKSORT(A, 1, n)
Analysis of quicksort

• Assume all input elements are distinct.
• In practice, there are better partitioning algorithms for when duplicate input elements may exist.
Worst-Case Running Time

- The worst case for deterministic quick-sort occurs when the array is sorted or reverse sorted and the pivot is the unique minimum or maximum element.
- One of L and G has size $n - 1$ and the other has size 0.
- The running time is proportional to the sum $n + (n - 1) + \ldots + 2 + 1$.
- Thus, the worst-case running time of quick-sort is $O(n^2)$.
Randomized Quicksort

• Partition around a *random* element as a pivot. I.e., around $A[t]$, where t chosen uniformly at random from $\{p \ldots r\}$

• Every recursive call choose a pivot at random independently.

• We will show that the *expected* time is $O(n \log n)$ for all input arrays A
Probability Review

• **Sample Spaces:** universe of outcomes Ω which is finite sets, with a probability function $p(i) \geq 0$ s.t. $\sum_{i \in \Omega} p(i) = 1$.

Ex: choosing a random pivot. $\text{pr}[\text{pivot}=i] = \frac{1}{n}$

• **Events:** Subset of sample space.

$\text{prob}[\text{event}] = \sum p(i) = 1$.

Ex: prob [a random pivot in Ω gives 1/4:3/4 split] = $\frac{1}{2}$
Probability Review

• **Random Variables**: a function $X: \Omega \rightarrow \mathbb{R}$
 - **Ex**: $T(n)$ running time of Quick Sort algorithm
 - **Ex**: $S =$ size of sub-array passed in recursive call.

• **Expectation of Random Variable**: average value of X weighted by the probability
 $$E[X] = \sum_{i \in \Omega} X(i)p(i)$$
 - **Ex**: how big on average is the first sub-array passed in randomized quick sort with random inputs?
Probability Review

• **Linearity of Expectations:** Let $X_1,..X_k$ be random variables defined over Ω. Then, $E[\Sigma X_i]=\Sigma[E[X_i]]$

True for all random variables

Independent

• **Events:** We say that A and B are independent events $\subseteq \Omega$ if $\text{prob}[A \text{ and } B]=\text{prob}[A] \times \text{prob}[B]$.

Check $\Rightarrow \text{prob}[A|B]=\text{prob}[A]$ and $\text{prob}[B|A]=\text{prob}[A]$.

• **Random Variables:** X and Y are independent if $\text{prob}[X=a \text{ and } Y=b]=\text{prob}[X=a] \times \text{prob}[X=b]$

Claim: $E[X \times Y]=E[X] \times E[Y]$ if X and Y are independent.
Analysis of Quick Sort method #1: Indicator random variables

Sample Space = all possible sequence-of-pivots that Quick Sort could choose in its execution.

Let $T(n) =$ the random variable denoting the running time of randomized Quicksort on an input list of size $n \approx$ number of comparisons that Quick Sort makes.

Recall: $T(n): \Omega \Rightarrow R$. A choice for a sequence – of-pivots, yields a running time.

Goal: compute $E[T(n)]$
Analysis of Quick Sort method #1: Indicator random variables

For $k = 0, 1, \ldots, n-1$, define the *indicator random variable* X_k as:

$$X_k = \begin{cases}
1 & \text{if PARTITION generates a } k : n-k-1 \text{ split}, \\
0 & \text{otherwise.}
\end{cases}$$

<table>
<thead>
<tr>
<th>X_0</th>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_{k-1}</th>
<th>X_k</th>
<th>X_{k+1}</th>
<th>X_{n-3}</th>
<th>X_{n-2}</th>
<th>X_{n-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>..</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

k and $n-k-1$
Great expectations: \(E[X_k], E[T(n)] \).

- Can use random variables to calculate expectations
- Expected value of indicator random variable:
 \[
 E[X_k] = 1 \cdot \Pr\{X_k=1\} + 0 \cdot \Pr\{X_k=0\} \\
 = 1 \cdot \left(\frac{1}{n}\right) + 0 \cdot \left(\frac{n-1}{n}\right) \\
 = \frac{1}{n}
 \]
- Since all splits are equally likely, assuming elements are distinct.
- Can use \(E[X_k] \) to calculate \(E[T(n)] \)
The power of indicator random variable

$$T(n) = \begin{cases}
T(0) + T(n-1) + \Theta(n) & \text{if } 0:n-1 \text{ split}, \\
T(1) + T(n-2) + \Theta(n) & \text{if } 1:n-2 \text{ split}, \\
& \cdots \\
T(n-1) + T(0) + \Theta(n) & \text{if } n-1:0 \text{ split},
\end{cases}$$

$$= \sum_{k=0}^{n-1} X_k (T(k) + T(n - k - 1) + \Theta(n)).$$

- Summarize all \(n\) cases in a single expression using \(X_k\).
- Sum selects the \(X_k\) where the split happens (\(X_k=1\))
Calculating expectation

\[E[T(n)] = E \left[\sum_{k=0}^{n-1} X_k (T(k) + T(n - k - 1) + \Theta(n)) \right] \]

Take expectations of both sides.
Calculating expectation

\[E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n - k - 1) + \Theta(n)) \right] \]

\[= \sum_{k=0}^{n-1} E[X_k (T(k) + T(n - k - 1) + \Theta(n))] \]

Linearity of expectation.
Calculating expectation

\[
E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n - k - 1) + \Theta(n)) \right]
\]

\[
= \sum_{k=0}^{n-1} E[X_k (T(k) + T(n - k - 1) + \Theta(n))]
\]

\[
= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(k) + T(n - k - 1) + \Theta(n)]
\]

Independence of \(X_k\) from other random choices in the recursive calls.
Calculating expectation

\[E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n - k - 1) + \Theta(n)) \right] \]

\[= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(k) + T(n - k - 1) + \Theta(n)] \]

\[= \frac{1}{n} \sum_{k=0}^{n-1} E[T(k)] + \frac{1}{n} \sum_{k=0}^{n-1} E[T(n - k - 1)] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n) \]

Linearity of expectation; \(E[X_k] = 1/n \).
Calculating expectation

\[
E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n - k - 1) + \Theta(n)) \right]
\]

\[
= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(k) + T(n - k - 1) + \Theta(n)]
\]

\[
= \frac{1}{n} \sum_{k=0}^{n-1} E[T(k)] + \frac{1}{n} \sum_{k=0}^{n-1} E[T(n - k - 1)] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n)
\]

\[
= \frac{2}{n} \sum_{k=1}^{n-1} E[T(k)] + \Theta(n)
\]

Summations have identical terms.
Hairy recurrence

\[E[T(n)] = 2 \sum_{k=2}^{n-1} E[T(k)] + \Theta(n) \]

(The \(k = 0, 1 \) terms can be absorbed in the \(\Theta(n) \).)

Prove: \(E[T(n)] \leq a n \lg n \) for constant \(a > 0 \)

By the substitution method.

Substitute Induction hypothesis

\[E[T(n)] \leq 2 \sum_{k=2}^{n-1} ak \lg k + \Theta(n) \]
Analysis method #1 summary

• Defined indicator random variable X_k, marking the partition point for $k:n-k-1$ split.

• Expressed running time $T(n)$ (rand. var.) as a function of this indicator random variable.

• Calculated the expected value of $E[T(n)]$ using properties of $E[X_k]$.

• Prove $E[T(n)] \leq an \log n$ by induction using the substitution method

\Rightarrow Quicksort expected running time $O(n \log n)$.
Analysis Method #2: What do we want from the Pivot

• Hope: Always the median? Too much to hope

• But, say we get say 1/4:3/4 split, that would yield $O(n \log n)$ runtime.

• Since half the elements will give a split of (at worst) 1/4:3/4, the probability of picking such an element as a pivot is $>1/2$

• This intuition leads to another analysis
“Paranoid” quicksort: Different Analysis method

• Let’s modify the quick sort algorithm to make it easier to analyze by another method:

 • Repeat:
 • Choose the pivot to be a random element of the array
 • Perform \textsc{Partition}
 • Until the resulting partition will cause a “good” recursive call: the sizes of both L and G are no larger than $\frac{3}{4}$ (size of the array)
 • Recurse on both sub-arrays
Expected Running Time Analysis for paranoid quick sort

- Consider a recursive call of quick-sort on a sequence of size n.

- Define
 - **Good call:** the sizes of L and G are each less than $3n/4$
 - **Bad call:** one of L and G has size greater than $3n/4$

- **Claim:** A call is good with probability $1/2$
- **Proof:** 1/2 of the possible pivots cause good calls:
Analysis

- Let $T(n)$ be an upper bound on the expected running time on any array of n elements.
- Consider any input of size n.
- The time needed to sort the input is bounded from above by a sum of
 - The time needed to sort the left subarray
 - The time needed to sort the right subarray
 - The number of iterations till we get a good call * cn (Cost of partition)
Expectations

Therefore:

\[T(n) \leq \max_i (T(i) + T(n - i)) + E[\# \text{ iterations}] \cdot cn \]

where maximum is taken over \(i \in [n/4, 3n/4] \)

• We showed \(\Pr[\text{good call}] > 1/2 \Rightarrow E[\#\text{iterations}] \) is \(\leq 2 \)

• So:

\[T(n) \leq \max_i (T(i) + T(n - i)) + 2cn \quad , \quad i \in [n/4, 3n/4] \]
Final bound

• Use a recursion tree argument:
 • Tree depth is $\Theta(\log n)$
 • Total cost at each level is at most $2cn$
 • Overall $T(n) = O(n \log n)$

• Show (exercise): if Paranoid Quick Sort is Expected to run in $O(n \log n)$, so is Randomized Quick Sort.