Today

- A data structure for a new problem
 - “Union-Find”
- Amortized analysis
Dynamic Maintenance of Sets

• Assume, we have a collection of elements
• The elements are being clustered
• Initially, each element forms its own cluster/set
• We want to enable two operations:
 – FIND-SET(\(x\)): report the cluster containing \(x\)
 – UNION(\(C_1, C_2\)): merges the clusters \(C_1, C_2\)
Disjoint-set data structure (Union-Find)

Problem:

• Maintain a collection of *pairwise-disjoint* sets \(S = \{ S_1, S_2, \ldots, S_r \} \).
• Each \(S_i \) contains one “representative” element \(x = \text{rep}[S_i] \).
• Must support three operations:
 - **MAKE-SET(\(x \))**: adds new set \(\{ x \} \) to \(S \) with \(\text{rep}[\{ x \}] = x \) (for any \(x \not\in S_i \) for all \(i \)).
 - **UNION(\(x, y \))**: replaces sets \(S_x, S_y \) with \(S_x \cup S_y \) in \(S \) for any \(\text{rep}.x, y \) in distinct sets \(S_x, S_y \).
 - **FIND-SET(\(x \))**: returns representative \(\text{rep}[S_x] \) of set \(S_x \) containing element \(x \).
Quiz

• If we have a $\text{WeakUnion}(x, y)$ that works only if x, y are representatives, how can we implement Union that works for any x, y?

• $\text{Union}(x, y)$

 $= \text{WeakUnion}(\text{Find-Set}(x), \text{Find-Set}(y))$
Applications

- Data clustering
- Killer App: Minimum Spanning Tree
- Amortized analysis
Ideas?

• How can we implement this data structure efficiently?
 – MAKE-SET
 – UNION
 – FIND-SET
Bad case for UNION or FIND
Simple linked-list solution

Store set $S_i = \{x_1, x_2, \ldots, x_k\}$ as an (unordered) doubly linked list. Define representative element $rep[S_i]$ to be the front of the list, x_1.

$S_i:$

![Diagram of linked list](image)

- **MAKE-SET(x)** initializes x as a lone node.
- **FIND-SET(x)** walks left in the list containing x until it reaches the front of the list.
- **UNION(x, y)** concatenates the lists containing x and y, leaving rep. as **FIND-SET**[x].
Store set $S_i = \{x_1, x_2, \ldots, x_k\}$ as an (unordered) doubly linked list. Define representative element $\text{rep}[S_i]$ to be the front of the list, x_1.

- $\text{MAKE-SET}(x)$ initializes x as a lone node. $\Theta(1)$
- $\text{FIND-SET}(x)$ walks left in the list containing x until it reaches the front of the list. $\Theta(n)$
- $\text{UNION}(x, y)$ concatenates the lists containing x and y, leaving rep. as $\text{FIND-SET}[x]$. $\Theta(n)$
Augmented linked-list solution

Store set \(S_i = \{x_1, x_2, \ldots, x_k\} \) as unordered doubly linked list. Each \(x_j \) also stores pointer \(rep[x_j] \) to head.

\[
\begin{align*}
S_i : & \quad x_1 \quad x_2 \quad \cdots \quad x_k \\
rep[S_i] & \\
\end{align*}
\]

- **FIND-SET(\(x \))** returns \(rep[x] \).
- **UNION(\(x, y \))** concatenates the lists containing \(x \) and \(y \), and updates the \(rep \) pointers for all elements in the list containing \(y \).
Example of augmented linked-list solution

$S_x : \quad \text{rep} \quad x_1 \quad \text{rep}[S_x] \quad x_2$

$S_y : \quad \text{rep}[S_y] \quad y_1 \quad \text{rep} \quad y_2 \quad \text{rep} \quad y_3$
Example of augmented linked-list solution

\[S_x \cup S_y : \]

\[\text{rep}[S_x] \]

\[\text{rep} \]

\[\text{rep}[S_y] \]
Example of augmented linked-list solution

$S_x \cup S_y :$

$rep[S_x \cup S_y]$
Store set $S_i = \{x_1, x_2, \ldots, x_k\}$ as unordered doubly linked list. Each x_j also stores pointer $rep[x_j]$ to head.

- **FIND-SET(x)** returns $rep[x]$. $\Theta(1)$
- **UNION(x, y)** concatenates the lists containing x and y, and updates the rep pointers for all elements in the list containing y. $\Theta(n)$
Amortized analysis

• So far, we focused on worst-case time of each operation.
 – E.g., UNION takes $\Theta(n)$ time for some operations
• Amortized analysis: count the total time spent by any sequence of operations
• Total time is always at most

 worst-case-time-per-operation * #operations

 but it can be much better!
 – E.g., if times are 1,1,1,…,1,n,1,…,1
• Can we modify the linked-list data structure so that any sequence of m MAKE-SET, FIND-SET, UNION operations cost less than $m*\Theta(n)$ time?
Alternative

\textbf{UNION}(x, y) :

- concatenates the lists containing \(y\) and \(x\), and
- update the \textit{rep} pointers for all elements in the list containing \(y\) \(x\)
Alternative concatenation

\textsc{Union}(x, y) could instead

- concatenate the lists containing \textit{y} and \textit{x}, and
- update the \textit{rep} pointers for all elements in the list containing \textit{x}.

\[S_x \cup S_y : \]

\[rep[S_y] \]

\[rep[S_x] \]
Alternative concatenation

$\text{UNION}(x, y)$ could instead

- concatenate the lists containing y and x, and
- update the rep pointers for all elements in the list containing x.

$S_x \cup S_y$:

$\text{rep}[S_x \cup S_y]$
Smaller into larger

- Concatenate smaller list onto the end of the larger list (each list stores its weight = # elements)

- Cost = Θ(length of smaller list).

Let n denote the overall number of elements (equivalently, the number of MAKE-SET operations). Let m denote the total number of operations.

Theorem: Cost of all UNION’s is $O(n \lg n)$.

Corollary: Total cost is $O(m + n \lg n)$.
Total UNION cost is $O(n \lg n)$

Proof:

- Monitor an element x and set S_x containing it
- After initial MAKE-SET(x), $\text{weight}[S_x] = 1$
- Consider any time when S_x is merged with set S_y
 - If $\text{weight}[S_y] \geq \text{weight}[S_x]$
 - pay 1 to update $\text{rep}[x]$
 - $\text{weight}[S_x]$ at least doubles (increasing by $\text{weight}[S_y]$)
 - Otherwise
 - pay nothing
 - $\text{weight}[S_x]$ only increases
- Thus:
 - Each time we pay 1, the weight doubles
 - Maximum possible weight is n
 - Maximum pay $\leq \lg n$ for x, or $O(n \log n)$ overall
Final Result

• We have a data structure for dynamic sets which supports:
 – **MAKE-SET**: $O(1)$ worst case
 – **FIND-SET**: $O(1)$ worst case
 – **UNION**:
 • Any sequence of m operations* takes $O(m \log n)$ time, or
 • … the *amortized complexity* of the operations* is $O(\log n)$

* **MAKE-SET, FIND-SET** or **UNION**
Can we do better?

One can do:

- **MAKE-SET**: $O(1)$ worst case
- **FIND-SET**: $O(lg\ n)$ worst case
- **WEAK-UNION**: $O(1)$ worst case
- Thus, **UNION**: $O(lg\ n)$ worst case
Representing sets as trees

• Each set $S_i = \{x_1, x_2, \ldots, x_k\}$ stored as a tree
• $\text{rep}[S_i]$ is the tree root.

$S_1 = \{x_1, x_2, x_3, x_4, x_5, x_6\}$
$S_2 = \{x_7\}$

$\text{MAKE-SET}(x)$ initializes x as a lone node.

$\text{FIND-SET}(x)$ walks up the tree containing x until it reaches the root.

$\text{UNION}(x, y)$ concatenates the trees containing x and y
Time?

- **MAKE-SET(x)** initializes x as a lone node. $O(1)$
- **FIND-SET(x)** walks up the tree containing x until it reaches the root. $O(\text{height}) = ?$
- **WEAK-UNION(x, y)** concatenates the trees containing x and y. $O(1)$
Trick 1: “Smaller into Larger” (for trees)

Algorithm: Merge tree with smaller weight into tree with larger weight.

- Height of tree increases only when its weight doubles
- Height logarithmic in weight
“Smaller into Larger” in trees

Proof:

• Monitor the height of an element z
• Each time the height of z increases, the weight of its tree doubles
• Maximum weight is n
• Thus, height of z is $\leq \log n$
Tree implementation

- We have:
 - \texttt{MAKE-SET}: $O(1)$ worst case
 - \texttt{FIND-SET}: $O(\text{height}) = O(\lg n)$ worst case
 - \texttt{WEAK-UNION}: $O(1)$ worst case
- Can amortized analysis buy us anything?
- Need another trick…
Trick 2: Path compression

When we execute a `FIND-SET` operation and walk up a path to the root, we *know* the representative for *all* the nodes on the path.

Path compression makes all of those nodes direct children of the root.
Trick 2: Path compression

When we execute a FIND-SET operation and walk up a path to the root, we know the representative for all the nodes on the path.

Path compression makes all of those nodes direct children of the root.
Trick 2: Path compression

When we execute a `FIND-SET` operation and walk up a path \(p \) to the root, we know the representative for all the nodes on path \(p \).

Path compression makes all of those nodes direct children of the root.

Cost of `FIND-SET(x)` is still \(\Theta(\text{depth}[x]) \).
The Theorem

Theorem: In general, amortized cost is $O(\alpha(n))$, where $\alpha(n)$ grows really, really slow.

Proof: Really, really long (CLRS, p. 509)