Lecture 21
Distributed Algorithms
Outline

- Models
- Three problems:
 - Leader election in a ring
 - Impossibility (when no unique identifiers)
 - Algorithm (when have unique identifiers)
 - BFS
 - Maximal Independent Set
Distributed algorithms

- Algorithms that are supposed to work in distributed networks, or on multiprocessors.

- Possible tasks:
 - Communication
 - Data management
 - Resource management
 - Synchronization
 - Reaching consensus
 - Solving computational problems (factoring, min spanning tree, set cover...)

Distributed algorithms: Difficulties

- Concurrent activity at many locations
 - sensornets

- Wired or wireless

- Uncertainty of timing, order of events, inputs

- Failure and recovery of processors, communication channels.
Synchronous network model

- Processes at nodes of a network digraph,
 - May have parts of input at each node (no shared memory)

- Links connect some process pairs
 - Send messages only along links
 - Digraph: $G = (V, E)$, $n = |V|$
 - Each node knows its in-neighbors and out-neighbors

- Executes in rounds – in each round:
 - Send and collect messages
 - Local processing
Today’s model:

- Processors know immediate neighbors, might not know global topology
- Assume common “clock”
 - Ignore synchronization/timing issues
- No processor or link failures
- Unbounded computation at nodes*
 - focus on communication
Leader election

Want to distinguish exactly one process as the “leader”.

- i.e., leader outputs “I am the leader” and no one else outputs anything
- (slightly more work – others output “I am not the leader”)

Motivation: Gives a “centralized control”. Leader can take charge of:

- Communication
- Coordination (e.g., data processing, consensus protocols)
- Allocating resources
- Scheduling tasks
- ...
Simple case: Ring network

- Ring network:
 - Bidirectional links
 - Processes don’t know the numbers;
 - know neighbors by the names “clockwise” and “counterclockwise”.

- **Theorem**: If all processes are identical, it’s impossible to elect a leader.
Proof of Theorem

- By contradiction. Assume an algorithm that solves the problem.
- State of processor:
 - Program counter
 - Communication history
- All processors start in the same state
- All processes are in identical states after r rounds. By induction:
 - Generate same messages, to corresponding neighbors.
 - Receive same messages.
 - Follow the program code identically.
- Since the algorithm solves the leader election problem, someone eventually gets elected.
- Then everyone gets elected, contradiction.
So we need something more...

- Assume processes have unique identifiers (UIDs)
 - Formally, each process starts with its own UID in local memory
 - Allows to distinguish the processes

- UIDs can appear anywhere in the ring, but each can appear only once.
Idea for algorithm

- Choose max valued UID to be leader!
 - Send value of the biggest UID seen so far clockwise
 - If ever receive your own value from neighbor, then your value made it around the ring, so you must be max valued!
Leader election algorithm
[LeLann] [Chang, Roberts]

- Initialize variable `send_max` to UID
- Repeat until leader found:
 - Each process sends `send_max` clockwise
 - Each process receives `incoming_max` from neighbor, compares with `send_max`.
 - If `incoming_max` is:
 - Bigger, `send_max ← incoming_max`
 - Smaller, discard (`send_max` stays the same)
 - Equal to UID, process declares itself leader!
Comments:

- Works even if:
 - Unidirectional communication (clockwise)
 - Processes don’t know n
Correctness proof

- Prove that exactly one process ever gets elected leader.

- More strongly:
 - Let i_{max} be the process with the max UID, u_{max}.
 - Prove:
 - i_{max} outputs “leader” by end of round n.
 - No other process ever outputs “leader”.
\(\text{\textit{i}}_{\text{\textup{max}}} \) outputs “leader” after \(n \) rounds

- Prove by induction on number of rounds \(0 \leq r \leq n \):

- **Lemma:** After \(r \) rounds, \textit{send_max} at all processes within \(r \) steps clockwise of \(\textit{i}_{\text{\textup{max}}} \) contain \(u_{\text{\textup{max}}} \).

- **Key fact:** \(\textit{i}_{\text{\textup{max}}} \) uses arrival of \(u_{\text{\textup{max}}} \) as signal to set its status to leader.
Uniqueness

- Claim: No one except i_{max} ever outputs "leader".
- Why?
 - For j other than i_{max}, u_j doesn’t get past i_{max} when moving around the ring.
 - So u_j doesn’t reach j
 - no one except i_{max} ever receives its own UID, so no one else ever elects itself.
Complexity bounds

- What to measure?
 - Time = number of rounds until “leader”: n
 - Communication = number of single-hop messages: $\leq n^2$

- Can get $O(n \log n)$ message algorithm
General Synchronous Networks (not just rings)
General synchronous network assumptions

- Digraph $G = (V,E)$:
 - $V =$ set of processes
 - $E =$ set of communication channels
 - $\text{distance}(i,j) =$ shortest distance from i to j
 - $\text{diam} = \max \text{distance}(i,j)$ for all i,j
 - Assume: Strongly connected (diam is finite), UIDs

- Processes communicate only over digraph edges.

- Don’t know the entire network (not even size!), just local neighborhood.
Breadth-first search

- **Given:** Distinguished source node i_0.

- **Find:** Breadth-first spanning tree, rooted at source node i_0.
 - Spanning: Includes every node.
 - Breadth-first: Node at distance d from i_0 appears at depth d in tree.

- **Form of output:** Each node (except i_0) sets a parent variable to indicate its parent in the tree.
Breadth-first search
Breadth-first search
Breadth-first search algorithm

- **Mark** nodes as they get incorporated into the tree.
 - Initially, only i_0 is marked.

- **Round 1:** i_0 sends **search** message to out-nbrs.

- **At every round:** An unmarked node that receives a **search** message:
 - Marks itself.
 - Designates one process from which it received **search** as its parent.
 - Sends **search** to out-nbrs at the next round.
Breadth-first search

Round 1 (start)
Breadth-first search

Round 1 (msgs)
Breadth-first search

Round 1 (trans)
Breadth-first search

Round 2 (start)
Breadth-first search

Round 2 (msgs)
Breadth-first search

Round 2 (trans)
Breadth-first search

Round 3 (start)
Breadth-first search

Round 3 (msgs)
Breadth-first search

Round 4 (start)
Breadth-first search

Round 4 (msgs)
Breadth-first search

Round 4 (trans)
Breadth-first search

Round 5 (start)
Breadth-first search

Round 5 (msgs)
Breadth-first search

Round 5 (trans)
Breadth-first search algorithm

- **Mark** nodes as they get incorporated into the tree.
- Initially, only i_0 is marked.
- **Round 1**: i_0 sends search message to out-nbrs.
- **At every round**: An unmarked node that receives a search message:
 - Marks itself.
 - Designates one process from which it received search as its parent.
 - Sends search to out-nbrs at the next round.
- Yields a BFS tree because all the branches are created synchronously.
- **Complexity**: Rounds = diameter + 1; Messages = $|E|$
Applications of BFS

- **Message broadcast:**
 - establish a BFS tree, with child pointers, then use it for broadcasting.
 - Can reuse the tree for many broadcasts
 - Each takes time only $O(\text{diameter})$, messages $O(n)$.

Applications of BFS

- Global computation:
 - Sum, max, or any kind of data aggregation:
 - Complexity: Time $O(\text{diameter})$; Messages $O(n)$
 - Leader election (without knowing diameter):
 - Everyone starts BFS, determines max UID.
 - Complexity: Time $O(\text{diam})$; Messages $O(n \mid E \mid)$

- Compute diameter:
 - All do BFS.
 - find height of each BFS tree.
 - find max of all heights.
Maximal Independent Set
Maximal independent set
Maximal Independent Set

- Subset \(I \) of vertices \(V \) of undirected graph \(G = (V,E) \) is **independent** if no two neighbors are in \(I \).

- Independent set \(I \) is **maximal** if no strict superset of \(I \) is independent.
 - But might not be maximum!
Maximal independent set
Maximal Independent Set

- **Assume:** (Today only) max degree d known to all processors

- **Output:**
 - Compute an MIS I of the network graph.
 - Each process in I should output *winner*, others output *loser*.
Notes

- Number of rounds is $O(\text{max_degree} \times \log n)$
- Slight modification of algorithm (and bigger modification of analysis) gives $O(\log n)$ round algorithm on general graphs
- Needs no UID’s
- Can be made “asynchronous”
Application 1

- Maximal Matching –
 - Matching where no edge can be added without violating “matching” property
 - Might not be maximum matching!
 - Find via MIS:
 - From $G=(V,E)$ construct $G' = (V',E')$
 - let $V' \leftarrow E$ and E' be pairs of nodes in V' whose respective edges in G are adjacent
 - MIS in G' gives a maximal matching in G

 maximal matching gives 2-approximation to maximum matching
Application 2

- Vertex coloring
 - Can color nodes of a graph with at most $(\text{max_degree} + 1)$ colors
Wireless network transmission:

- Nodes broadcast messages, all neighbors in “receive mode” receive
- Let nodes in the MIS transmit messages simultaneously, others receive.
 - Independence guarantees that all transmitted messages are received by all neighbors (since neighbors don’t transmit at the same time).
 - Neglecting collisions here---assume receiver receives everything that reaches it.
 - Maximality ensures that everyone either transmits or receives something.
Another application:

- Fruit Fly nervous system cell differentiation
 - Sensory Organ Precursor cells do not connect to each other – form MIS!