Lecture 22: Sub-linear Time Algorithms for Big Data
Today’s goal

- Motivation and models
- Classical approximation problems
 - Diameter of a point set
- Property testing: notion of approximation for decision problems
 - “Sortedness” of a list
 - Connectedness of a graph
How can we understand BIG DATA?
Very big data

• Impossible to access all of it

• Potentially accessible data is too enormous to be viewed by a single individual

• Once accessed, data can change
Connected world phenomenon

- each “node” is a person
- “edge” between people that know each other
- Is the underlying graph connected?
Does earth have the connected world property?

- How can we know?
 - data collection problem is immense
 - unknown groups of people found on earth
 - births/deaths
The Gold Standard in 6.046

• Linear time algorithms!

• Are they adequate?
What can we hope to do without viewing most of the data?

- Can’t answer “for all” or “exactly” type statements:
 - Exactly how many individuals on earth are left-handed?
 - Are all individuals connected?

- Maybe can answer?
 - approximately how many individuals on earth are left-handed?
 - is there a large group of connected individuals?
What can we hope to do without viewing most of the data?

- Change our goals?
 - for most interesting problems: algorithm must give approximate answer
- we know we can answer *some* questions...
 - e.g., sampling to approximate average, median values
What types of approximation?

- **“Classical” approximation** for optimization problems:
 output is number that is close to value of the optimal solution for given input.
 (not enough time to construct a solution)

- **Property testing** for decision problems:
 output is correct answer for given input, or at least for some other input “close” to it.
I. Classical Approximation Problems
First:

- A very simple example –
 - Deterministic
 - Approximate answer
 - And (of course).... sub-linear time!
Approximate the diameter of a point set

- Given: m points, described by a distance matrix D, s.t.
 - D_{ij} is the distance from i to j.
 - D satisfies triangle inequality and symmetry.

 (note: input size $n = m^2$)

- Let i, j be indices that maximize D_{ij} then D_{ij} is the diameter.

- Output: k, l such that $D_{kl} \geq D_{ij}/2$
Algorithm

- Algorithm:
 - Pick k arbitrarily
 - Pick l to maximize D_{kl}
 - Output D_{kl}
- Why does it work?
 \[D_{ij} \leq D_{ik} + D_{kj} \text{ (triangle inequality)} \]
 \[\leq D_{kl} + D_{kl} \text{ (choice of } l + \text{ symmetry of } D) \]
 \[\leq 2D_{kl} \]
- Running time? $O(m) = O(n^{1/2})$
II. Property testing
Main Goal:

- Quickly distinguish inputs that have specific property from those that are far from having the property

all inputs

inputs with the property

close to having property
Property Testing

- Properties of any object, e.g.,
 - Functions
 - Graphs
 - Strings
 - Matrices
 - Codewords

- Model must specify
 - representation of object and allowable queries
 - notion of close/far, e.g.,
 - number of bits/words that need to be changed
 - edit distance
A simple property tester
Sortedness of a sequence

- Given: list $y_1 y_2 \ldots y_n$
- Question: is the list sorted?
- Clearly requires n steps – must look at each y_i
Sortedness of a sequence

- Given: list y_1, y_2, \ldots, y_n
- Question: can we quickly test if the list close to sorted?
What do we mean by "quick"?

- query complexity measured in terms of list size n

- Our goal (if possible):
 - Very small compared to n, will go for $clog n$
What do we mean by “close”?

Definition: a list of size \(n\) is \(\varepsilon\)-close to sorted if can delete at most \(\varepsilon n\) values to make it sorted. Otherwise, \(\varepsilon\)-far.

(\(\varepsilon\) is given as input, e.g., \(\varepsilon=1/10\))

<table>
<thead>
<tr>
<th>Sorted</th>
<th>1 2 4 5 7 11 14 19 20 21 23 38 39 45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close</td>
<td>1 4 2 5 7 11 14 19 20 39 23 21 38 45</td>
</tr>
<tr>
<td></td>
<td>1 4 5 7 11 14 19 20 23 38 45</td>
</tr>
<tr>
<td>Far</td>
<td>45 39 23 1 38 4 5 21 20 19 2 7 11 14</td>
</tr>
<tr>
<td></td>
<td>1 4 5</td>
</tr>
</tbody>
</table>
Requirements for algorithm:

- Pass sorted lists
- Fail lists that are ε-far.
 - Equivalently: if list likely to pass test, can change at most ε fraction of list to make it sorted

 Probability of success $> \frac{3}{4}$

 (can boost it arbitrarily high by repeating several times and outputting “fail” if ever see a “fail”, “pass” otherwise)

- Can test in $O(1/\varepsilon \log n)$ time

 (and can’t do any better!)
An attempt:

- **Proposed algorithm:**
 - Pick random i and test that $y_i \leq y_{i+1}$

- **Bad input type:**
 - $1,2,3,4,5,\ldots n/4, 1,2,\ldots n/4, 1,2,\ldots n/4, 1,2,\ldots, n/4$
 - Difficult for this algorithm to find “breakpoint”
 - But other tests work well...

![Graph showing relationship between y_i and i]
A second attempt:

- Proposed algorithm:
 - Pick random $i<j$ and test that $y_i \leq y_j$

- Bad input type:
 - $n/4$ groups of 4 decreasing elements
 - 4, 3, 2, 1, 8, 7, 6, 5, 12, 11, 10, 9..., 4k, 4k-1, 4k-2, 4k-3, ...
 - Largest monotone sequence is $n/4$
 - must pick i, j in same group to see problem
 - need $\Omega(n^{1/2})$ samples
A minor simplification:

- Assume list is distinct (i.e. \(x_i \neq x_j\))

- Claim: this is not really easier
 - Why?
 - Can “virtually” append \(i\) to each \(x_i\)
 - \(x_1, x_2, \ldots, x_n\) → \((x_1, 1), (x_2, 2), \ldots, (x_n, n)\)
 - e.g., \(1, 1, 2, 6, 6\) → \((1, 1), (1, 2), (2, 3), (6, 4), (6, 5)\)
 - Breaks ties without changing order
A test that works

- The test:

 Test $O(1/\varepsilon)$ times:
 - Pick random i
 - Look at value of y_i
 - Do binary search for y_i
 - Does the binary search find any inconsistencies? If yes, FAIL
 - Do we end up at location i? If not FAIL

- Pass if never failed

- Running time: $O(\varepsilon^{-1} \log n)$ time
- Why does this work?
Behavior of the test:

- Define index \(i \) to be \textbf{good} if binary search for \(y_i \) successful

- \(O(1/\varepsilon \log n) \) time test (restated):
 - pick \(O(1/\varepsilon) \) \(i \)'s and pass if they are all good

- Correctness:
 - If list is sorted, then all \(i \)'s good (uses distinctness) \(\rightarrow \) test always passes
 - If list likely to pass test, then at least \((1-\varepsilon)n\) \(i \)'s are good.
 - Main observation: \textit{good elements form increasing sequence}
 - Proof: for \(i<j \) both good need to show \(y_i < y_j \)
 - let \(k = \) least common ancestor of \(i,j \)
 - Search for \(i \) went left of \(k \) and search for \(j \) went right of \(k \) \(\rightarrow \) \(y_i < y_k < y_j \)
 - Thus list is \(\varepsilon \)-close to monotone (delete \(< \varepsilon n \) bad elements)
Testing connectedness of a graph

- Given graph G
 - n vertices
 - Max degree d
 - Adjacency list representation

- Is G connected?
Connected world phenomenon

- Is the underlying graph close to connected?
Close to connected

- Def: G is ϵ–close to connected if can add $< \epsilon dn$ edges and transform it to connected
- Today: ok to violate max deg d requirement when transform
Property tester:

- **Input:** ϵ and G
- **Output:**
 - If G connected, output “PASS”
 - If G not ϵ-close to connected, output “FAIL” with probability $\geq 3/4$

 (note: if G not connected, but is close, then ok to output either “PASS” or “FAIL”)
Idea:

- If G far from connected, lots of nodes must be in small components!
- More specifically...
 - Will show that if G far from connected
 - Then must have many connected components
 - So many components must be small
 - And there must be many nodes in small components
Algorithm:

- Do $O\left(\frac{1}{\epsilon d}\right)$ times:
 - Pick random node s, and run BFS from s until:
 - $\geq \frac{2}{\epsilon d}$ distinct nodes seen
 - OR see that s is component of size $< \frac{2}{\epsilon d}$ nodes, in which case output “FAIL” and halt
 - If reach this point, output “PASS”

Runtime: $O\left(\frac{1}{\epsilon d}\right)$ loops, each does $O\left(\frac{1}{\epsilon d}\right)$ steps of BFS, using $O(d)$ time per step – total is $O\left(\frac{1}{\epsilon^2 d}\right)$
Behavior

- Lemma 1: If G ϵ-far from connected, then has $\geq \epsilon dn$ components.

- Lemma 2: If $\geq \epsilon dn$ components then $\geq \epsilon dn/2$ components of size $< \frac{2}{\epsilon d}$.

- Observation: If $\geq \epsilon dn/2$ components of size $< \frac{2}{\epsilon d}$ then $\geq \epsilon dn/2$ nodes in components of size $< \frac{2}{\epsilon d}$.

These cause tester to FAIL!
Behavior

- Putting it together: If G is ϵ-far from connected, then $\geq \epsilon d/2$ fraction of nodes cause the algorithm to fail!
 - So $\text{Prob}[\text{tester fails in one of } \frac{c}{\epsilon d} \text{ loops}]$ is

 $$\geq 1 - \left(1 - \frac{\epsilon d}{2}\right)^{\frac{2c}{2\epsilon d}} \geq 1 - e^{c/2} \geq \frac{3}{4} \quad \text{(for big enough } c)$$
Lemma 1

If $G \epsilon$-far from connected, then has $\geq \epsilon dn$ components

Proof: if $<\epsilon dn$ components, can add $<\epsilon dn$ edges to connect
Lemma 2

If $\geq \epsilon dn$ components then $\geq \epsilon dn/2$ components of size $< \frac{2}{\epsilon d}$

(see notes for proof)
Observation:

If $\geq \epsilon dn/2$ components of size $< \frac{2}{\epsilon d}$ then $\geq \epsilon dn/2$ nodes in components of size $< \frac{2}{\epsilon d}$

Why? Each small component has at least one node.