Lecture 16 Approximation Algorithms continued.

- Graph coloring
- Max Cut - 2ways
- Metric TSP
Graph Coloring

How many colors needed for coloring nodes of G so that no two adjacent nodes get same color?

Decision problems:

Is G 2-colorable?
Is G 3-colorable?

A type of approximation algorithm:

Given G, known to be 3-colorable

Output 3-in-coloring of G

First, an easy fact:

Fact 1: Any graph G of degree d can be colored with $d+1$ colors in poly time.

Why?
Consider nodes in arbitrary order.
Poly time algorithm (since d neighbors, there is always ≥ 1 such color)
So our only problem is nodes of deg > d?

how can we get rid of these?

Fact 2. \(G \) is 3-colorable. Define \(N(v) = \{ w \mid \text{w is a nbr of } v \} \)

Then, for any \(v \), \(N(v) = \{ w \mid \text{w is a nbr of } v \} \)

+ edges \(E_N(v) = \{ (u, w) \mid (u, w) \in E \} \)

Then \(G' = (N(v), E_N(v)) \)

is bipartite.

Why? in 3-coloring, nodes in \(N(v) \)

must be assigned different color than \(v \)

+ only 2 colors left.

This coloring doesn't violate edges between them.
And now, an Algorithm:

Algorithm

While \exists v \text{ st. } \deg(v) \geq \sqrt{n} \ do

- color \(v \) with color "1"
- color \(N(v) \) with 2 new colors

bipartite

remove \(v \) \& \(N(v) \)

Color remaining graph with \(\sqrt{n} \) new colors

- Runtime polynomial? \(\checkmark \) since bipartite coloring \(\mathcal{E}P \)
 + "greedy" proof of fact 1 gives poly time algorithm

- Correctness? can reuse "1" in while loop, since remove node + all neighbors

- 3\(\sqrt{n} \) colors? "While" loop executed \(\leq \sqrt{n} \) times, since each time it reduces number of nodes by \(\sqrt{n} + 1 \)

\(\Rightarrow \) # colors used in while loop \(\leq 1 + 2\sqrt{n} \) (or \(\leq 2\sqrt{n} \))

last step uses \(\leq \sqrt{n} \) new colors

\(\Rightarrow \) total colors \(\leq 3\sqrt{n} \)
Max Cut (2 ways!)

Given: Graph \(G = (V, E) \)

Output: partition of \(V \) into \(V_1, V_2 \)
to maximize "outside" i.e. \((u, v) \in E\)
st. \(u \in V_1, v \in V_2 \)

decision problem: is there cut of size \(\geq k \)?
NP-hard

Approx. Algorithm 1

- place node 1 in \(V_1 \)
- Consider remaining nodes in arbitrary order: \(i_2, i_3, \ldots, i_n \)
 to place \(i_j \):
 - if node \(i_j \) has more edges to nodes in \(V_1 \) than to nodes in \(V_2 \)
 place \(i_j \) in \(V_2 \)
 - o.w. place \(i_j \) in \(V_1 \)

Runtime: \(O(n) \)

Performance: at every placement \(\# \text{edges crossing cut} \geq \# \text{edges not crossing} \)
\(\implies \geq \frac{n}{2} \text{edges cross cut} \leq \text{since max cut size is } n \)
this is 2-approximation!
Randomized Approx Alg 2

- for each node \(i \in V
 - \text{flip coin}
 - \text{if } H_i, \text{ place } i \text{ in } V_1
 - \text{else (T) place } i \text{ in } V_2

\text{Runtime? } O(n)

\text{Performance?}

\[
E[\text{cut size}] = E \left[\sum_{(u,v) \in E} 1_{(u,v)} \right]
\]

\[
= \sum_{(u,v) \in E} E[1_{(u,v)}] \quad \text{linearity of expectation}
\]

\[
= \sum_{(u,v) \in E} \Pr[(u,v) \text{ crosses cut}] \quad \text{expectation of indicator variable is prob it equals 1}
\]

\[
= \sum_{(u,v) \in E} \Pr[u \in V_1 \cup v \in V_2 \text{ or } u \in V_2 \cup v \in V_1]
\]

\[
= \sum_{(u,v) \in E} \Pr[u \in V_1 \cup v \in V_2] + \Pr[u \in V_2 \cup v \in V_1] \quad \text{union of disjoint events}
\]

\[
= \sum_{(u,v) \in E} \Pr[u \in V_1] \cdot \Pr[v \in V_2] + \Pr[u \in V_2] \cdot \Pr[v \in V_1] \quad \text{u+v's placement are independent events}
\]
\[
= \sum_{(u,v) \in E} \left(\frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \right)
\]
\[
= \sum_{(u,v) \in E} \frac{1}{2}
\]
\[
= \frac{|E|}{2}
\]

This analysis weaker than previous?

We expect a pretty good result, but what is probability that we get it?

(pretty good, but not shown here)
Metric Travelling Salesman Problem (Metric Tsp)

Given \(n \times n \) matrix \(w \) st. \(w(u,v) \geq 0 \)

\[\Delta \Rightarrow w(u,v) \leq w(u,x) + w(x,v) \]

\(\forall u,v \in V \)

Problem find cycle \(V_1 \rightarrow V_2 \rightarrow \ldots \rightarrow V_n \rightarrow V_1 \)

visiting each node exactly once

+ minimizing \(\frac{1}{n} \sum_{i=1}^{n} w(v_i, v_{i+1}) \)

\(\sum_{i=1}^{n} w(v_i, v_{i+1}) \)

Approximation Algorithm:

1. Compute MST \(T \)
2. Pick arbitrary root node for \(T \)
3. Output preorder traversal of \(T \)

 equivalently:

- Walk "around" \(T \) (OS) visits each edge twice
- Modify walk to skip repeats of nodes by taking shortcut to next unseen node

\(\frac{1}{2} \) guarantee: not longer due to \(\Delta \)
example

\[
\begin{align*}
A & \quad 6 \\
B & \quad 1 \\
C & \quad 4 \\
D & \quad 5 \\
\end{align*}
\]

Preorder Traversal: 6

\[D \rightarrow C \rightarrow A \rightarrow \cancel{C} \rightarrow D \rightarrow B \rightarrow D\]

Skip repeats

length of preorder traversal = \(2 \cdot w(MST)\)

length of walk with shortcuts ≤ \(2 \cdot w(MST)\)

length of OPT TSP ≥ \(w(MST)\)

why? take OPT TSP cycle. remove any edge, gives spanning tree \(T\) with \(w(T) \leq w(\text{OPT TSP})\)

\(w(MST)\) is at most \(w(T)\)

\[w(\text{output}) \leq 2 \cdot w(MST) \leq 2 \cdot w(\text{OPT})\]

Christofides' algorithm gives 1.5 approximation.

For planar TSP, Arora/Mitchell give poly time approx to any \((1 + \epsilon)\) - factor.