LECTURE 6
Races and Parallelism

Charles E. Leiserson
September 24, 2013
Recall: Basics of Cilk

```c
int fib(int n) {
    if (n < 2) return n;
    int x, y;
    x = cilk_spawn fib(n-1);
    y = fib(n-2);
    cilk_sync;
    return x + y;
}
```

The named `child` function may execute in parallel with the `parent` caller.

Control cannot pass this point until all spawned children have returned.

Cilk keywords `grant permission` for parallel execution. They do not `command` parallel execution.
Loop Parallelism in Cilk

Example: In-place matrix transpose

The iterations of a `cilk_for` loop execute in parallel.

```
// indices run from 0, not 1
void cilk_for (int i=1; i<n; ++i) {
    for (int j=0; j<i; ++j) {
        double temp = A[i][j];
        A[i][j] = A[j][i];
        A[j][i] = temp;
    }
}
```
Determinate races
Race Conditions

Race conditions are the bane of concurrency. Famous race bugs include the following:

- **Therac–25 radiation therapy machine** — killed 3 people and seriously injured many more.
- **North American Blackout of 2003** — left 50 million people without power.

Race bugs are notoriously difficult to discover by conventional testing!
Determinacy Races

Definition. A determinacy race occurs when two logically parallel instructions access the same memory location and at least one of the instructions performs a write.

Example

```
int x = 0;
cilk_for (int i=0, i<2, ++i) {
  x++;
  x++;
}
assert(x == 2);
```
A Closer Look

int x = 0;

x++; x++;

assert(x == 2);

r1 = x;
r1++;
x = r1;

r2 = x;
r2++;
x = r2;

assert(x == 2);

Definition. A *determinacy race* occurs when two logically parallel instructions access the same memory location and at least one of the instructions performs a write.

```plaintext
1. x = 0;
2. r1 = x;
3. r1++;  
4. r2 = x;
5. r2++;  
6. x = r2;
7. x = r1;
8. assert(x == 2);
```
Types of Races

Suppose that instruction \textbf{A} and instruction \textbf{B} both access a location \textit{x}, and suppose that \textbf{A}||\textbf{B} (\textbf{A} is parallel to \textbf{B}).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Race Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>read</td>
<td>read</td>
<td>none</td>
</tr>
<tr>
<td>read</td>
<td>write</td>
<td>read race</td>
</tr>
<tr>
<td>write</td>
<td>read</td>
<td>read race</td>
</tr>
<tr>
<td>write</td>
<td>write</td>
<td>write race</td>
</tr>
</tbody>
</table>

Two sections of code are \textit{independent} if they have no determinacy races between them.
Avoiding Races

- Iterations of a `cilk_for` should be independent.
- Between a `cilk_spawn` and the corresponding `cilk_sync`, the code of the spawned child should be independent of the code of the parent, including code executed by additional spawned or called children.
 - **Note:** The arguments to a spawned function are evaluated in the parent before the spawn occurs.
- Machine word size matters. Watch out for races in packed data structures:

```
struct {
  char a;
  char b;
} x;
```

Ex. Updating `x.a` and `x.b` in parallel may cause a race! Nasty, because it may depend on the compiler optimization level. (Safe on Intel x86–64.)
Cilkscreen Race Detector

- If an ostensibly deterministic Cilk program run on a given input could possibly behave any differently than its serial elision, Cilkscreen guarantees to report and localize the offending race.
- Employs a regression-test methodology, where the programmer provides test inputs.
- Identifies filenames, lines, and variables involved in races, including stack traces.
- Runs off the binary executable using dynamic instrumentation.
- Runs about 20–50 times slower than real-time.
- Your best friend.
WHAT IS PARALLELISM?
int fib (int n) {
 if (n < 2) return n;
 else {
 int x, y;
 x = cilk_spawn fib(n-1);
 y = fib(n-2);
 cilk_sync;
 return x + y;
 }
}

Example:
fib(4)
```
int fib (int n) {
    if (n < 2) return n;
    else {
        int x, y;
        x = cilk_spawn fib(n-1);
        y = fib(n-2);
        cilk_sync;
        return x + y;
    }
}
```

Example:
fib(4)

"Processor oblivious"

The computation dag unfolds dynamically.
A parallel instruction stream is a dag $G = (V, E)$. Each vertex $v \in V$ is a strand: a sequence of instructions not containing a spawn, sync, or return from a spawn. An edge $e \in E$ is a spawn, call, return, or continue edge. Loop parallelism (cilk_for) is converted to spawns and syncs using recursive divide-and-conquer.
Assuming that each strand executes in unit time, what is the **parallelism** of this computation?
Amdahl’s “Law”

If 50% of your application is parallel and 50% is serial, you can’t get more than a factor of 2 speedup, no matter how many processors it runs on.

In general, if a fraction α of an application must be run serially, the speedup can be at most $1/\alpha$.

Gene M. Amdahl

© 2013 Charles E. Leiserson and I-Ting Angelina Lee
Quantifying Parallelism

What is the parallelism of this computation?

Amdahl’s Law says that since the serial fraction is \(3/18 = 1/6\), the speedup is upper-bounded by 6.
Performance Measures

\[T_P = \text{execution time on } P \text{ processors} \]

\[T_1 = \text{work} = 18 \]
Performance Measures

\[T_P = \text{execution time on } P \text{ processors} \]

\[T_1 = \text{work} = 18 \]

\[T_\infty = \text{span}^* = 9 \]

Also called critical-path length or computational depth.
Performance Measures

\[T_P = \text{execution time on } P \text{ processors} \]

\[T_1 = \text{work} = 18 \]

\[T_\infty = \text{span}^* = 9 \]

Work Law
- \(T_P \geq T_1 / P \)

Span Law
- \(T_P \geq T_\infty \)

Also called critical-path length or computational depth.
Series Composition

\[
\begin{align*}
\text{Work:} & \quad T_1(A \cup B) = T_1(A) + T_1(B) \\
\text{Span:} & \quad T_\infty(A \cup B) = T_\infty(A) + T_\infty(B)
\end{align*}
\]
Parallel Composition

Work: $T_1(A \cup B) = T_1(A) + T_1(B)$

Span: $T_\infty(A \cup B) = \max\{T_\infty(A), T_\infty(B)\}$
Definition. $\frac{T_1}{T_P} = \text{speedup}$ on P processors.

- If $\frac{T_1}{T_P} < P$, we have sublinear speedup.
- If $\frac{T_1}{T_P} = P$, we have (perfect) linear speedup.
- If $\frac{T_1}{T_P} > P$, we have superlinear speedup, which is not possible in this simple performance model, because of the WORK LAW $T_P \geq \frac{T_1}{P}$.
Because the \textit{SPAN LAW} dictates that $T_p \geq T_\infty$, the maximum possible speedup given T_1 and T_∞ is

$$\frac{T_1}{T_\infty} = \text{parallelism}$$

= the average amount of work per step along the span

= $\frac{18}{9}$

= 2.
Example: \(\text{fib}(4) \)

Assume for simplicity that each strand in \(\text{fib}(4) \) takes unit time to execute.

\[
\begin{align*}
\text{Work:} & \quad T_1 = 17 \\
\text{Span:} & \quad T_\infty = 8 \\
\text{Parallelism:} & \quad T_1/T_\infty = 2.125
\end{align*}
\]

Using many more than 2 processors can yield only marginal performance gains.
THE CILKVIEW SCALABILITY ANALYZER
The Cilk Plus tool suite provides a scalability analyzer called Cilkview.

Like the Cilkscreen race detector, Cilkview uses dynamic instrumentation to analyze a serial execution of a program.

Cilkview computes work and span to derive upper bounds on parallel performance.

Cilkview also estimates scheduling overhead to compute a burdened span for lower bounds.
Example: Parallel quicksort

```c
static void quicksort(uint64_t *left, uint64_t *right)
{
    uint64_t *p;
    if (left == right) return;
    p = partition(left, right);
    cilk_spawn quicksort(left, p);
    quicksort(p + 1, right);
    cilk_sync;
}
```

Analyze the sorting of 100,000,000 numbers.

★★★ Guess the parallelism! ★★★
Cilkview Output

Measured speedup
Cilkview Output

Parallelism

11.21
Cilkview Output

SPAN LAW
Cilkview Output

WORK LAW (linear speedup)
Cilkview Output

Burdened parallelism: estimates scheduling overheads
Example: Parallel quicksort

```
static void quicksort(uint64_t *left, uint64_t *right)
{
    uint64_t *p;
    if (left == right) return;
    p = partition(left, right);
    cilk_spawn quicksort(left, p);
    quicksort(p + 1, right);
    cilk_sync;
}
```

Expected work = $O(n \lg n)$
Expected span = $\Omega(n)$
Parallelism = $O(\lg n)$
Interesting Practical* Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Work</th>
<th>Span</th>
<th>Parallelism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merge sort</td>
<td>$\Theta(n \lg n)$</td>
<td>$\Theta(lg^3n)$</td>
<td>$\Theta(n/lg^2n)$</td>
</tr>
<tr>
<td>Matrix multiplication</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(lg n)$</td>
<td>$\Theta(n^3/lg n)$</td>
</tr>
<tr>
<td>Strassen</td>
<td>$\Theta(n^{lg7})$</td>
<td>$\Theta(lg^2n)$</td>
<td>$\Theta(n^{lg7}/lg^2n)$</td>
</tr>
<tr>
<td>LU–decomposition</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n lg n)$</td>
<td>$\Theta(n^2/lg n)$</td>
</tr>
<tr>
<td>Tableau construction</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^{lg3})$</td>
<td>$\Theta(n^{2-lg3})$</td>
</tr>
<tr>
<td>FFT</td>
<td>$\Theta(n lg n)$</td>
<td>$\Theta(lg^2n)$</td>
<td>$\Theta(n/lg n)$</td>
</tr>
<tr>
<td>Breadth–first search</td>
<td>$\Theta(E)$</td>
<td>$\Theta(\Delta lg V)$</td>
<td>$\Theta(E/\Delta lg V)$</td>
</tr>
</tbody>
</table>

* Cilk on 1 processor competitive with the best C.
SCHEDULING THEORY

SPEED LIMIT
Scheduling

- Cilk allows the programmer to express potential parallelism in an application.
- The Cilk scheduler maps strands onto processors dynamically at runtime.
- Since the theory of distributed schedulers is complicated, we’ll explore the ideas with a centralized scheduler.
IDEA: Do as much as possible on every step.

Definition. A strand is ready if all its predecessors have executed.
Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A strand is *ready* if all its predecessors have executed.

Complete step
- \(\geq P \) strands ready.
- Run any \(P \).

\[P = 3 \]
Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition. A strand is ready if all its predecessors have executed.

Complete step
- $\geq P$ strands ready.
- Run any P.

Incomplete step
- $< P$ strands ready.
- Run all of them.
Theorem [G68, B75, EZL89]. Any greedy scheduler achieves

\[T_P \leq T_1/P + T_\infty. \]

Proof.

- # complete steps \(\leq T_1/P \), since each complete step performs \(P \) work.
- # incomplete steps \(\leq T_\infty \), since each incomplete step reduces the span of the unexecuted dag by 1. ■
Corollary. Any greedy scheduler achieves within a factor of 2 of optimal.

Proof. Let T_p^* be the execution time produced by the optimal scheduler. Since $T_p^* \geq \max\{T_1/P, T_\infty\}$ by the WORK and SPAN LAWS, we have

\[
T_p \leq T_1/P + T_\infty \\
\leq 2 \cdot \max\{T_1/P, T_\infty\} \\
\leq 2T_p^*.
\]

■
Corollary. Any greedy scheduler achieves near-perfect linear speedup whenever $T_1/T_\infty \gg P$.

Proof. Since $T_1/T_\infty \gg P$ is equivalent to $T_\infty \ll T_1/P$, the Greedy Scheduling Theorem gives us

$$T_P \leq T_1/P + T_\infty \approx T_1/P.$$

Thus, the speedup is $T_1/T_P \approx P$. ■

Definition. The quantity T_1/PT_∞ is called the parallel slackness.
Cilk Performance

- Cilk’s work-stealing scheduler achieves
 - \(T_P = T_1/P + O(T_\infty) \) expected time (provably);
 - \(T_P \approx T_1/P + T_\infty \) time (empirically).

- Near-perfect linear speedup as long as
 \(P \ll T_1/T_\infty \).

- Instrumentation in Cilkview allows you to measure \(T_1 \) and \(T_\infty \).
THE CILK RUNTIME SYSTEM
Each worker (processor) maintains a work deque of ready strands, and it manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].
Each worker (processor) maintains a work deque of ready strands, and it manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].
Each worker (processor) maintains a work deque of ready strands, and it manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].
Cilk Runtime System

Each worker (processor) maintains a work deque of ready strands, and it manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].
Cilk Runtime System

Each worker (processor) maintains a work deque of ready strands, and it manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

© 2013 Charles E. Leiserson and I–Ting Angelina Lee
Cilk Runtime System

Each worker (processor) maintains a **work deque** of ready strands, and it manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

When a worker runs out of work, it **steals** from the top of a **random** victim’s deque.
Each worker (processor) maintains a **work deque** of ready strands, and it manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

When a worker runs out of work, it **steals** from the top of a **random** victim’s deque.
Cilk Runtime System

Each worker (processor) maintains a work deque of ready strands, and it manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

When a worker runs out of work, it steals from the top of a random victim’s deque.
Each worker (processor) maintains a work deque of ready strands, and it manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

When a worker runs out of work, it steals from the top of a random victim’s deque.
Cilk Runtime System

Each worker (processor) maintains a work deque of ready strands, and it manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

When a worker runs out of work, it steals from the top of a random victim’s deque.
Each worker (processor) maintains a work deque of ready strands, and it manipulates the bottom of the deque like a stack [MKH90, BL94, FLR98].

Theorem [BL94]: With sufficient parallelism, workers steal infrequently \Rightarrow linear speed-up.
Work–Stealing Bounds

Theorem [BL94]. The Cilk work–stealing scheduler achieves expected running time

$$T_P \approx T_1/P + O(T_\infty)$$

on P processors.

Pseudoproof. A processor is either working or stealing. The total time all processors spend working is T_1. Each steal has a $1/P$ chance of reducing the span by 1. Thus, the expected cost of all steals is $O(PT_\infty)$. Since there are P processors, the expected time is

$$(T_1 + O(PT_\infty))/P = T_1/P + O(T_\infty).$$
Cilk supports C++’s **rule for pointers**: A pointer to stack space can be passed from parent to child, but not from child to parent.

Views of stack

Cilk’s **cactus stack** supports multiple views in parallel.
Theorem. Let S_1 be the stack space required by a serial execution of a Cilk program. Then the stack space required by a P-processor execution is at most $S_P \leq PS_1$.

Proof (by induction). The work-stealing algorithm maintains the busy-leaves property: Every extant leaf activation frame has a worker executing it. ■
Linguistic Implications

Code like the following executes properly without any risk of blowing out memory:

```c
for (int i=1; i<1000000000; ++i) {
    cilk_spawn foo(i);
}
cilk_sync;
```

MORAL

Only monsters steal children!

★★★★★