LECTURE 18
Speculative Parallelism & Computer Chess

Charles E. Leiserson
November 12, 2013
SPECULATIVE PARALLELISM

SPEED LIMIT
PER ORDER OF 6.172
Thresholding a Sum

```c
#define uint unsigned int

bool sum_exceeds(uint *A, size_t n, uint limit) {
  uint sum = 0;
  for (size_t i=0; i<n; ++i) {
    sum += A[i];
  }
  return sum > limit;
}
```
Short-Circuiting

Optimization (Bentley rule)
Quit early if the partial product ever exceeds the threshold.

```c
#define uint unsigned int

bool sum_exceeds(uint *A, size_t n, uint limit) {
    uint sum = 0;
    for (size_t i=0; i<n; ++i) {
        sum += A[i];
        if (sum > limit) return true;
    }
    return false;
}
```
Thresholding a Sum in Parallel

```c
#define uint unsigned int

bool sum_exceeds(uint *A, size_t n, uint limit) {
    uint sum;
    cilk::reducer< cilk::opadd<uint> > sum_r();
    cilk_for (size_t i=0; i<n; ++i) {
        *sum_r += A[i];
    }
    sum_r.move_out(sum);
    return sum > limit;
}
```

Question
How can we parallelize a short-circuited loop?
#define uint unsigned int

uint sum_of(uint *A, size_t n) {
 if (n > 1) {
 uint s1 = cilk_spawn sum_of(A, n/2);
 uint s2 = sum_of(A + n/2, n - n/2);
 cilk_sync;
 uint sum = s1 + s2;
 return sum;
 }
 return A[0];
}

bool sum_exceeds(uint *A, size_t n, uint limit) {
 return sum_of(A, n) > limit;
}

How might we quit early and save work if the partial sum exceeds the threshold?
#define uint unsigned int

uint sum_of(uint *A, size_t n, uint limit, bool *abort_flag) {
 if (*abort_flag) return 0;
 if (n > 1) {
 uint s1 = cilk_spawn sum_of(A, n/2, limit, abort_flag);
 uint s2 = sum_of(A + n/2, n - n/2, limit, abort_flag);
 cilk_sync;
 uint sum = s1 + s2;
 if (sum > limit && !*abort_flag) *abort_flag = true;
 return sum;
 }
 return A[0];
}

bool sum_exceeds(uint *A, size_t n, uint limit) {
 bool abort_flag = false;
 return sum_of(A, n, limit, &abort_flag) > limit;
}
#define uint unsigned int

uint sum_of(uint *A, size_t n, uint limit, bool *abort_flag) {
 if (*abort_flag) return 0;
 if (n > 1) {
 uint s1 = cilk_spawn sum_of(A, n/2, limit, abort_flag);
 uint s2 = sum_of(A + n/2, n - n/2, limit, abort_flag);
 cilk_sync;
 uint sum = s1 + s2;
 if (sum > limit && !*abort_flag)
 *abort_flag = true;
 }
 return A[0];
}

bool sum_exceeds(uint *A, size_t n, uint limit) {
 bool abort_flag = true;
 return sum_of(A, n, limit, &abort_flag);
}

Notes:
• Beware: nondeterministic code!
• The benign race on abort_flag can cause true-sharing contention if you are not careful.
• Don’t forget to reset abort_flag after use!
• Is a memory fence necessary? No!
Definition. Speculative parallelism occurs when a program spawns some parallel work that might not be performed in a serial execution.

Rule of Thumb: Don’t spawn speculative work unless there is little other opportunity for parallelism and there is a good chance it will be needed.
Analysis of Speculative Parallelism

Theorem. Suppose that a program contains two parts A and B, and that after A executes, the probability is α that we need to execute B. Assuming a worst-case greedy scheduler, it cannot be worthwhile to speculate on B if the parallel slackness of B exceeds $\alpha/(1 - \alpha)$.

Proof. Let P be the number of processors, let $T_p = (A_1 + B_1)/P + \max\{A_\infty, B_\infty\}$ be the time for the speculative execution, and let $T'_p = (A_1 + \alpha B_1)/P + A_\infty + \alpha B_\infty$ be the expected time for executing A and B (if necessary) in series. Then we have

\[
T_p = (A_1 + B_1)/P + \max\{A_\infty, B_\infty\} \\
= (A_1 + \alpha B_1)/P + (1 - \alpha)B_1/P + A_\infty + B_\infty - \min\{A_\infty, B_\infty\} \\
= T'_p + (1 - \alpha)B_1/P + (1 - \alpha)B_\infty - \min\{A_\infty, B_\infty\} \\
= T'_p + (1 - \alpha)B_1/P + B_\infty - \alpha B_\infty - \min\{A_\infty, B_\infty\} \\
\geq T'_p + (1 - \alpha)B_1/P - \alpha B_\infty \\
> T'_p \text{ if } (1 - \alpha)B_1/P > \alpha B_\infty, \text{ or equivalently, if } B_1/P B_\infty > \alpha/(1 - \alpha). \quad \blacksquare
ALPHA–BETA SEARCH
Min–Max Search

- Two players: MAX □ and MIN ●.
- The game tree represents all moves from the current position within a given search ply (depth).
- At leaves, apply a static evaluation function.
- MAX chooses the maximum score among its children.
- MIN chooses the minimum score among its children.
Alpha–Beta Pruning

IDEA: If **MAX** discovers a move so good that **MIN** would never allow that position, **MAX**’s other children need not be searched — **beta cutoff**.

© 2013 Charles E. Leiserson and I–Ting Angelina Lee
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
Alpha–Beta Pruning

IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — *beta cutoff.*
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
Alpha–Beta Pruning

IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If **MAX** discovers a move so good that **MIN** would never allow that position, **MAX**’s other children need not be searched — beta cutoff.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If \textbf{MAX} discovers a move so good that \textbf{MIN} would never allow that position, \textbf{MAX}'s other children need not be searched — \textbf{beta cutoff}.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If **MAX** discovers a move so good that **MIN** would never allow that position, **MAX**’s other children need not be searched — **beta cutoff**.
IDEA: If MAX discovers a move so good that MIN would never allow that position, MAX’s other children need not be searched — beta cutoff.
IDEA: If **MAX** discovers a move so good that **MIN** would never allow that position, **MAX**’s other children need not be searched — *beta cutoff.*
Alpha–Beta Strategy

- Each search from a node employs a window \([alpha, beta]\).
- If the value of the search falls below \(alpha\), keep searching.
- If the value of the search falls between \(alpha\) and \(beta\), then increase \(alpha\) and keep searching.
- If the value of the search falls above \(beta\), generate a beta cutoff and return.
Code for Alpha–Beta Pruning

```c
int search( position *prev, int move, int depth ) {
    position cur;       /* Current position */
    int best_score = -INF; /* Best score so far */
    int num_moves;      /* Number of children */
    int child_sc;       /* Child's score */

    make_move(prev, move, &cur);

    int sc = eval(&cur); /* Static evaluation */
    if ( abs(sc)>=MATE || depth<=0 ) { /* Leaf node */
        return (sc);
    }

    cur.alpha = -prev->beta; /* Negamax */
    cur.beta = -prev->alpha;

    ⋮
```
// Generate moves, hopefully in best-first order
num_moves = gen_moves(&cur);

for (int mv = 0; mv < num_moves; ++mv) {
 child_sc = -search(&cur, mv, depth-1);
 if (child_sc > best_score)
 best_score = child_sc;
 if (child_sc >= cur.beta) /* beta cutoff */
 break;
 if (child_sc >= cur.alpha)
 cur.alpha = child_sc;
}
return best_score;
Theorem [KM75]. For a game tree with branching factor b and depth d, an alpha–beta search with moves searched in best–first order examines exactly $b^{\lceil d/2 \rceil} + b^{\lfloor d/2 \rfloor} - 1$ nodes at ply d. □

The naive algorithm examines b^d nodes at ply d. For the same work, the search depth is effectively doubled. For the same depth, the work is square–rooted.
Parallel Alpha–Beta

Observation: In a best-ordered tree, the degree of every node is either 1 or maximal.

IDEA [FMM91]: If the first child fails to generate a beta cutoff, speculate that the remaining children can be searched in parallel without wasting work: “Young Siblings Wait.” Abort subcomputations that prove to be unnecessary.

© 2013 Charles E. Leiserson and I–Ting Angelina Lee
Abort Library

void abort_constructor(Abort *self, Abort *parent);

int is_aborted(Abort *self);

void do_abort(Abort *self);

IDEA: Poll up the search tree to see whether any internal node desires an abort.
COMPUTER–CHESS PROGRAMS
Opening Book

- Precompute best moves at the beginning of the game.
- The [KM75] theorem implies that it is cheaper to keep separate opening books for each side than to keep one opening book for both.
Iterative Deepening

• Rather than searching the game tree to a given depth d, search it successively to depths $1, 2, 3, ..., d$.
• With each search, the work grows exponentially, and thus the total work is only a constant factor more than searching depth d alone.
• During the search for depth k, keep move-ordering information to improve the effectiveness of alpha-beta during search $k+1$.
• Good mechanism for time control.
IDEA: If there are few enough pieces on the board, precompute the outcomes and store them in a database.

- It doesn’t suffice to store just win, loss, or draw for a position.
- Keep the distance to mate to avoid cycling.
Quiescence Search

- Evaluating at a fixed depth can leave a board position in the middle of a capture exchange.
- At a “leaf” node, continue the search using only captures — quiet the position.
- Each side has the option of “standing pat.”
Null–Move Pruning

- In most positions, there is always something better to do than nothing.
- Forfeit the current player’s move (illegal in chess), and search to a shallower depth.
- If a beta cutoff is generated, assume that a full-depth search would have also generated the cutoff.
- Otherwise, perform a full-depth search of the moves.
- Watch out for zugzwang!
Other Search Heuristics

- Killers
 - The same good move at a given depth tends to generate cutoffs elsewhere in the tree.
- Move extensions — grant an extra ply to the search if
 - the King is in check,
 - certain captures,
 - singular (forced) moves.
- Zero-window search — a variant of alpha–beta, where $\text{alpha} = \text{beta}$.
Transposition Table

- The search tree is actually a dag!
- If you’ve searched a position to a given depth before, memoize it in a hash table (actually a cache), and don’t search it again.
- Store the best move from the position to improve alpha–beta and minimize wasted work in parallel alpha–beta.
- Tradeoff between how much information to keep per entry and the number of entries.
Zobrist Hashing

- For each square on the board and each different state of a square, generate a random string.
- The hash of a board position is the XOR of the random strings corresponding to the states of the squares.
- Because XOR is its own inverse, the hash of the position after a move can be accomplished incrementally by a few XOR’s, rather than by computing the entire hash function from scratch.
Transposition-Table Records

- Zobrist key
- Score
- Move
- Quality (depth searched)
- Bound type (upper, lower, or exact)
- Age
Typical Move Ordering

1. Transposition–table move
2. Internal iterative deepening
3. Nonlosing capture in MVV–LVA (most valuable victim, least valuable aggressor) order
4. Killers
5. Losing captures
6. History heuristic
Late-Move Reductions (LMR)

Observation
With a good move ordering, a beta cutoff will either occur right away or not at all.

Strategy
- Search first few moves normally.
- Reduce depth for later moves.
Board Representation

- Bitboards
 - Use a 64-bit word to represent, for example, where all the pawns are on the 64 squares of the board.
 - Use POPCOUNT and other bit tricks to do move generation and to implement other chess concepts.
More Good Stuff

http://chessprogramming.wikispaces.com/
Final-Project Preview

- Performance-engineer a computer program to play Leiserchess (like chess, but with lasers).
- 2 betas plus a final.
- **Major time saver:** Code walk of the Leiserchess codebase on Thursday.
- Bring your laptops!