Subtyping
[redacted version]

Adam Chlipala
MIT

6.820
September 30, 2013
void foo(int n) {
 float f = n;
 // ...and so on.
}
Subtyping in Java: Interfaces

interface List {
 List append(List);
}

class Nil implements List {
 Nil() {
 }
 List append(ls) {
 return ls;
 }
}

class Cons implements List {
 private int data;
 private List tail;
 Cons(int d, List t) {
 data = d;
 tail = t;
 }
 List append(ls) {
 return Cons(data, tail.append(ls));
 }
}
Subtyping in Java: Inheritance

class Cons implements List {
 /* ... */
}

class LoggingCons extends Cons {
 private int numAppends;

 LoggingCons(int d, List t) {
 super(d, t);
 numAppends = 0;
 }

 List append(ls) {
 ++numAppends;
 return super.append(ls);
 }

 int howManyAppends() { return numAppends; }
}
Subtyping as Graph Search

- Arrow from A to B to indicate that B is a “direct” subtype of A

Types:
- float
- int
- List
- Nil
- Cons
- LoggingCons
Subtyping as a Formal Judgment

Reflexivity: \[\tau \leq \tau \]

Primitive rule: \[\text{int} \leq \text{float} \]

Inheritance: \[\text{class A extends B} \]
\[A \leq B \]

Interfaces: \[\text{class A implements B} \]
\[A \leq B \]

This style of subtyping is called **nominal**, because the edges between user-defined types are all declared **explicitly**, via the **names** of those types.
What is Subtyping, Really?

Assume we have some operator $[.]$, such that $[\tau]$ is a mathematical set that represents τ.

\[
\begin{align*}
\text{[int]} &= \mathbb{Z} \\
\text{[float]} &= \mathbb{R}
\end{align*}
\]

What's a natural way to formulate subtyping here?
A More Helpful Guiding Principle
Sanity-Checking the Principle

Primitive rule: $\text{int} \leq \text{float}$

Primitive rule: $\text{float} \leq \text{int}$

Primitive rule: $\text{int} \leq \text{int} \rightarrow \text{int}$
A **structural** subtyping system includes rules that analyze the *structure* of types, rather than just using graph edges declared by the user explicitly.
Pair Types

Consider types $\tau_1 \times \tau_2$, consisting of (immutable) pairs of a τ_1 and a τ_2.

What is a good subtyping rule for this feature?
Record Types

Consider types like \{ a_1 : \tau_1, \ldots, a_N : \tau_N \}, consisting of, for each \(i \), a field \(a_i \) of type \(\tau_i \).
Function Types

Consider types $\tau_1 \rightarrow \tau_2$.
Arrays

Consider types $\tau []$.
Subtyping Variance and Generics/Polymorphism

\[\text{List}<\tau_1> \leq \text{List}<\tau_2> \]
Algebraic Structure of Subtyping

New universal supertype ("top")

\[\tau \leq \top \]
\[\bot \leq \tau \]

With this addition, subtyping forms a complete lattice!
What is a Complete Lattice?

- A set S
- A partial order \subseteq over S
- A binary least upper bound operator \cup
- A binary greater lower bound operator \cap

We can use \leq as a partial order over types!
The unique greatest element is \top.
The unique least element is \bot.
\cup moves up the graph to the lowest common supertype.
\cap moves down the graph to the highest common subtype.

Example algebraic laws we can derive:
$\tau \cup \top = \top$
$\tau \cap \bot = \bot$
$\left(\tau_1 \times \tau_2\right) \cup \left(\tau'_1 \times \tau'_2\right) = \left(\tau_1 \cup \tau'_1\right) \times \left(\tau_2 \cup \tau'_2\right)$
How could we incorporate subtyping?
Review of Formal Type Soundness

Type soundness:
Whenever |- e : τ and e \:\Rightarrow^* \:\text{e}',
either e' is a value or \:\exists e''. e' \:\Rightarrow \:\text{e}''.

Standard lemmas to establish soundness:

Type progress:
Whenever |- e : τ, either e is a value or \:\exists e'. e \:\Rightarrow \:\text{e}'.

Type preservation:
Whenever |- e : τ and e \:\Rightarrow \:\text{e}', |- e' : τ

This notion of soundness is the perfect formal test for the subtyping rules we've been developing!
(And we can use the same proof approach as before.)
Coq demo with L08-Subtyping.v