Introduction to Abstract Interpretation

Armando Solar-Lezama
Computer Science and Artificial Intelligence Laboratory
MIT
With some slides from Saman Amarasinghe

November 4, 2013
Course Recap

What you have learned so far

Operational Semantics

• How will a given program behave on a given input?
• This is the ground truth for any analysis

Types

• Annotations describe properties of the data that can be referred by a variable.
• Easy to describe properties that are global to the execution, but only one variable at a time (at least with the machinery we have seen here)
• Properties are fixed a priori by the type system designer
• Actual analysis is cheap
• Annotations can often be inferred

Program Logics

• Annotations describe properties of the state at a given point in the program.
• Easy to describe complex properties of the overall program state, but messy to describe properties that hold over time
• Logic provides a rich language for properties
• Actual analysis can be expensive
• Annotations are hard to infer
Some motivation

What is the loop invariant?

Intuition:

- The loop invariant is a set of states
- C transforms elements in $A \land b$ to other elements in A.

```
{true}
y=0;
while(x<10){
    x = x+1;
    y = y+2;
}
{even(y)}
```
Simplifying the problem

This rule is strictly weaker
- Many correct programs can’t be proved with it

Simpler Intuition:
- The loop invariant is a set of states
- C transforms elements in A to other elements in A.

\[
\begin{align*}
\{true\} \\
y = 0; \\
\text{while}(x < 10)\{ \\
\quad x = x + 1; \\
\quad y = y + 2; \\
\} \\
\{\text{even}(y)\}
\end{align*}
\]
Discovering the invariant

There may be many candidates for A
- True is always an invariant

$A_0 \subseteq A_1 \subseteq A_2$

Postcondition

Precondition

Big \iff Weak
Discovering the invariant

We want a set A such that $\vdash \{A\} c \{A\}$
- It should be small enough to prove the postcondition (strong)
- But big enough to prove the precondition (weak)

Let $F(P) = wpc(c, P) \land Post$
- Then what we want is a greatest fixpoint solution of $A = F(A)$

Convergence properties
- Can we always find such solutions?

Forward vs. Backward
- When is it better to use wpc vs. spc?

Precision
- How do we minimize the loss of precision?
Partial Orders

Set P

Partial order \leq such that $\forall x, y, z \in P$

- $x \leq x$ (reflexive)
- $x \leq y$ and $y \leq x$ implies $x = y$ (asymmetric)
- $x \leq y$ and $y \leq z$ implies $x \leq z$ (transitive)

Can use partial order to define

- Upper and lower bounds
- Least upper bound
- Greatest lower bound
Upper Bounds

If $S \subseteq P$ then
- $x \in P$ is an upper bound of S if $\forall y \in S. \ y \leq x$
- $x \in P$ is the least upper bound of S if
 - x is an upper bound of S, and
 - $x \leq y$ for all upper bounds y of S
- \lor - join, least upper bound, lub, supremum, sup
 - \lor S is the least upper bound of S
 - \lor x, y is the least upper bound of $\{x, y\}$
- Often written as \sqcup as well
Lower Bounds

If $S \subseteq P$ then
- $x \in P$ is a lower bound of S if $\forall y \in S. \ x \leq y$
- $x \in P$ is the greatest lower bound of S if
 - x is a lower bound of S, and
 - $y \leq x$ for all lower bounds y of S
- \land - meet, greatest lower bound, glb, infimum, inf
 - $\land S$ is the greatest lower bound of S
 - $x \land y$ is the greatest lower bound of $\{x,y\}$
- Often written as \cap as well
Covering

$x < y$ if $x \leq y$ and $x \neq y$

x is covered by y (y covers x) if
- $x < y$, and
- $x \leq z < y$ implies $x = z$

Conceptually,
- y covers x if there are no elements between x and y
Lattices

If $x \land y$ and $x \lor y$ exist for all $x, y \in P$
then P is a lattice

If $\land S$ and $\lor S$ exist for all $S \subseteq P$
then P is a complete lattice

All finite lattices are complete

Example of a lattice that is not complete
- Integers \mathbb{I}
- For any $x, y \in \mathbb{I}$, $x \lor y = \text{max}(x, y)$, $x \land y = \text{min}(x, y)$
- But $\lor I$ and $\land I$ do not exist
- $I \cup \{+\infty, -\infty\}$ is a complete lattice
Example

\[P = \{000, 001, 010, 011, 100, 101, 110, 111\} \]
(standard boolean lattice, also called hypercube)

\[x \leq y \text{ if } (x \text{ bitwise and } y) = x \]

Hasse Diagram

- If \(y \) covers \(x \)
 - Line from \(y \) to \(x \)
 - \(y \) above \(x \) in diagram
Top and Bottom

Greatest element of P (if it exists) is top (T)
Least element of P (if it exists) is bottom (⊥)
Connection Between \leq, \wedge, and \vee

The following 3 properties are equivalent:

- $x \leq y$
- $x \vee y = y$
- $x \wedge y = x$
Lattices as Algebraic Structures

Have defined \lor and \land in terms of \leq
Will now define \leq in terms of \lor and \land
 - Start with \lor and \land as arbitrary algebraic operations that satisfy associative, commutative, idempotence, and absorption laws
 - Will define \leq using \lor and \land
 - Will show that \leq is a partial order

Intuitive concept of \lor and \land as information combination operators (or, and)
Algebraic Properties of Lattices

- \((x \lor y) \lor z = x \lor (y \lor z)\) (associativity of \(\lor\))
- \((x \land y) \land z = x \land (y \land z)\) (associativity of \(\land\))
- \(x \lor y = y \lor x\) (commutativity of \(\lor\))
- \(x \land y = y \land x\) (commutativity of \(\land\))
- \(x \lor x = x\) (idempotence of \(\lor\))
- \(x \land x = x\) (idempotence of \(\land\))
- \(x \lor (x \land y) = x\) (absorption of \(\lor\) over \(\land\))
- \(x \land (x \lor y) = x\) (absorption of \(\land\) over \(\lor\))
Connection Between \land and \lor

$x \lor y = y$ if and only if $x \land y = x$

Proof of $x \lor y = y$ implies $x = x \land y$

$$
\begin{align*}
x & = x \land (x \lor y) & \text{(by absorption)} \\
& = x \land y & \text{(by assumption)}
\end{align*}
$$

Proof of $x \land y = x$ implies $y = x \lor y$

$$
\begin{align*}
y & = y \lor (y \land x) & \text{(by absorption)} \\
& = y \lor (x \land y) & \text{(by commutativity)} \\
& = y \lor x & \text{(by assumption)} \\
& = x \lor y & \text{(by commutativity)}
\end{align*}
$$
Chains

A set S is a chain if $\forall x, y \in S. \ y \leq x$ or $x \leq y$

P has no infinite chains if every chain in P is finite
Product Lattices

Given two lattices \(L \) and \(Q \), the product can easily be made a lattice

\[
(l_1, q_1) \sqsubseteq (l_2, q_2) \iff l_1 \sqsubseteq l_2 \text{ and } q_1 \sqsubseteq q_2
\]

For vectors of \(L \), defining a lattice is also easy

\[
\langle l_1, l_2, ..., l_k \rangle \sqsubseteq \langle t_1, t_2, ..., t_k \rangle \iff \forall i \in [1,k] \ l_i \sqsubseteq t_i
\]
Back to our problem

A lattice of predicates:
- \(<(x = \bot, even, odd, T)> \)
 - Ex: \(<x = even, y = odd> \trianglelefteq <x = \bot, y = odd> \)

What does this have to do with our problem?
Lattices and fixpoints

Order Preserving (Monotonic) Function:
\[x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y) \]

Now, let \(x_\perp \) be the least fixed point of \(f: L \rightarrow L \)

- So \(f(x_\perp) = x_\perp \)

Now, let \(x_0 = \bot \) and \(x_i = f(x_{i-1}) \)

- By induction, \(x_i \sqsubseteq x_\perp \)
- Also, the chain \(x_i \) is an ascending chain
- If \(L \) has no infinite ascending chains, sooner or later \(x_i = x_{i+1} = x_\perp \)

Same trick works for greatest fixed point!

- But then you have to start with \(x_0 = \top \)
Back to our problem

A lattice of predicates:
- \(<(x = \bot, \text{even}, \text{odd}, \top)>\)
 - Ex: \(\langle x = \text{even}, y = \text{odd} \rangle \sqsubseteq \langle x = \top, y = \text{odd} \rangle\)

We now have a recipe to find a greatest fixpoint solution
- As long as \(F(P) = wpc(c,P) \land Post\) is monotonic in our lattice

\[
x = \begin{cases}
\top & \text{Could be odd or even} \\
\text{odd} & \text{definitely odd} \\
\text{even} & \text{definitely even} \\
\bot & \text{who cares}
\end{cases}
\]

\{true\}
y=0;
while(x<10){
 x = x+1;
 y = y+2;
}
{even(y)}
Knaster-Tarski Theorem

Order Preserving (Monotonic) Function:
\[x \leq y \implies f(x) \leq f(y) \]

Let \(L \) be a complete lattice and \(f:L \to L \) be an order preserving function. Then the set of fixed points of \(f \) in \(L \) is also a complete lattice.
Finding a fixpoint

\{x = \top, y = \top\}
y = 0;
while (x < 10) {
 x = x + 1;
 y = y + 2;
}
\{x = \top, y = even\}

\(F(P) = wpc(c, P) \land B\)
- \(P_0 = \{x = \top, y = \top\}\)
- \(P_1 = \{x = \top, y = even\}\)
- \(P_2 = \{x = \top, y = even\}\)
- Success!

\(x = \begin{cases}
\top & \text{odd} \\
\bot & \text{definitely odd}
\end{cases}
\)

\(\begin{cases}
\top & \text{odd} \\
\bot & \text{definitely even}
\end{cases}
\)

Could be odd or even
definitely odd
definitely even
who cares
Complicating things a bit

\[
\{ x = T, y = T \}
\]

\[
y = 0; \ t = 1; \quad \{ \text{c0} \}
\]

\[
\text{while}(x < 10) \{
\quad x = x + 1; \quad \{ \text{c1} \}
\quad y = y + 2; \quad \{ \text{c1} \}
\quad \text{if}(x = 5) \{
\quad \quad t = t + 2; \quad \{ \text{c2} \}
\quad \text{else} \{
\quad \quad y = t + 1; \quad \{ \text{c3} \}
\quad \}
\}
\}
\]

\[
\{ x = T, y = \text{even} \}
\]

\[
\vdash \{ A \land b \} c_1 \{ B \} \quad \vdash \{ A \land \text{not } b \} c_2 \{ B \}
\]

\[
\vdash \{ A \} \text{if } b \text{ then } c_1 \text{ else } c_2 \{ B \}
\]

Relaxed Rule

\[
\vdash \{ A \} c_1 \{ B \} \quad \vdash \{ A \} c_2 \{ B \}
\]

\[
\vdash \{ A \} \text{if } b \text{ then } c_1 \text{ else } c_2 \{ B \}
\]

\[
F(P) = \text{wpc}(c, P) \land \text{Post}
\]

\[
= \text{wpc}(c_1, \text{wpc}(c_2, P) \land \text{wpc}(c_3, P)) \land \text{Post}
\]
Dataflow equations

\{x = T, y = T\} \quad \text{<-P1}

\text{y=0; t=1; } \quad \text{c0}

while(x<10)\{ \quad \text{<-P2}
\quad x = x+1; \quad \text{c1}
\quad y = y+2; \quad \text{c2}
\quad \text{if(x=5){} } \quad \text{c3}
\quad \text{t=t+2; } \quad \text{c4}
\quad } \quad \text{else{}
\quad \text{y = t+1; } \quad \text{c5}
\quad } \quad \text{<-P2}
\}
\{x = T, y = even\} \quad \text{<-P5}

F(P) = \text{wpc}(c, P) \land \text{Post}
\quad = \text{wpc}(c1, \text{wpc}(c2, P) \land \text{wpc}(c3, P)) \land \text{Post}

p \equiv \text{wpc}(c0, p2)
\quad p2 \equiv \text{wpc}(c1, p3)
\quad p3 \equiv \text{wpc}(c2, p2) \land \text{wpc}(c3, p2)
\quad p2 \equiv p5
\quad \rightarrow p2 \equiv \text{wpc}(c1, p3) \land p

Big <=> Weak
So A \Rightarrow B
is equivalent to
A \sqsubseteq B
Dataflow equations

\{ x = T, y = T \} \quad \text{<-P1}
\{ y = 0; t = 1; \} \quad \text{<-C0}
\text{while}(x < 10)\{ \quad \text{<-P2}
\quad x = x + 1; \quad \text{<-C1}
\quad y = y + 2; \quad \text{<-C1}
\quad \text{if}(x = 5)\{ \quad \text{<-P3}
\quad \quad t = t + 2; \quad \text{<-C2}
\quad \} \quad \text{<-C2}
\text{else}\{ \quad \text{<-C3}
\quad \quad y = t + 1; \quad \text{<-C3}
\quad \}
\}\quad \text{<-P2}

\{ x = T, y = even \} \quad \text{<-P5}

p : \equiv wpc(c0, p2)
p2 : \equiv wpc(c1, p3) \land p5
p3 : \equiv wpc(c2, p2) \land wpc(c3, p2)
Dataflow Analysis

General Analysis Framework
- Developed by Kildall in 1973
- Traditionally used for compiler optimization

Frame analysis question as a set of equations on a CFG
Control Flow Graph

\{x = T, y = T\} \quad \leftarrow \text{P1}

y=0; t=1;

\text{while}(x<10)\{
\quad x = x+1;
\quad y = y+2;
\quad \text{if}(x=5)\{
\quad \quad t=t+2;
\quad \} \quad \leftarrow \text{P3}
\quad \text{else}\{
\quad \quad y = t+1;
\quad \}
\quad \}
\quad \leftarrow \text{P2}

\{x = T, y = even\} \quad \leftarrow \text{P5}
Control Flow Graph

Very general program representation
- Easy to represent unstructured control flow
- Widely used by most program analysis tools for imperative languages
Solution strategy

For every basic block we have an equation of the form
- \(\text{Out} \subseteq F(\text{in}) \)
- Use meet (\(\land \)) when many edges meet together

We can solve through “Chaotic Iteration”
- Keep a list of nodes to update
- Pick one CFG node at a time
- Update out from new in
- If out changed, add its children to the list
Computing transfer function

So far we defined it in terms of weakest precondition.
- Or alternatively, strongest postcondition
- Too general and expensive!

We can hard-code a transfer function specific to the lattice
- For finite lattices they can be implemented cheaply in terms of bitvector operations

We can build lattices for arbitrary facts about the program
- Need to make sure our transfer functions are monotonic
Example: Reaching Definitions

Concept of definition and use
- $a = x+y$
- is a definition of a
- is a use of x and y

A definition reaches a use if
- value written by definition
- may be read by use
Reaching Definitions

Example by Saman Amarasinghe

```plaintext
s = 0;
a = 4;
i = 0;
k == 0

b = 1;
b = 2;
i < n

s = s + a*b;
i = i + 1;
return s
```
Reaching Definitions and Constant Propagation

Is a use of a variable a constant?
- Check all reaching definitions
- If all assign variable to same constant
- Then use is in fact a constant

Can replace variable with constant
Is a Constant in \(s = s + a \times b \)?

Yes!

\(a = 4 \)
Constant Propagation Transform

Yes!

a = 4

s = 0;
a = 4;
i = 0;
k == 0

b = 1;
b = 2;
i < n

s = s + 4*b;
i = i + 1;

return s
Is b Constant in s = s+a*b?

No!

b = 1

b = 2
Computing Reaching Definitions

Compute with sets of definitions
- represent sets using bit vectors
- each definition has a position in bit vector

At each basic block, compute
- definitions that reach start of block
- definitions that reach end of block

Do computation by simulating execution of program until reach fixed point
1: \(s = 0; \)
2: \(a = 4; \)
3: \(i = 0; \)
4: \(k == 0 \)
5: \(b = 1; \)
6: \(s = s + a \cdot b; \)
7: \(i = i + 1; \)
return \(s \)
Transfer functions

Each basic block has

- **IN** - set of definitions that reach beginning of block
- **OUT** - set of definitions that reach end of block
- **GEN** - set of definitions generated in block
- **KILL** - set of definitions killed in block

\[
\begin{align*}
\text{GEN} & : s = s + a \times b; \ i = i + 1; & = 0000011 \\
\text{KILL} & : s = s + a \times b; \ i = i + 1; & = 1010000
\end{align*}
\]

Analyzer scans each basic block to derive GEN and KILL sets for each function
Dataflow Equations

IN[b] = OUT[b1] U ... U OUT[bn]
- where b1, ..., bn are predecessors of b in CFG

OUT[b] = (IN[b] - KILL[b]) U GEN[b]

IN[entry] = 0000000

Result: system of equations
Solving Equations

Use fixed point algorithm
Initialize with solution of OUT[b] = 0000000
Repeatedly apply equations
- \(IN[b] = OUT[b1] \cup \ldots \cup OUT[bn] \)
- \(OUT[b] = (IN[b] - KILL[b]) \cup GEN[b] \)
Until reach fixed point
Until equation application has no further effect
Use a worklist to track which equation applications may have a further effect
Questions

Does the algorithm halt?
- yes, because transfer function is monotonic
- if increase IN, increase OUT
- in limit, all bits are 1

If bit is 0, does the corresponding definition ever reach basic block?
If bit is 1, is does the corresponding definition always reach the basic block?