Introduction to Models and Properties

Computer Science and Artificial Intelligence Laboratory
MIT
Armando Solar-Lezama

Nov 20, 2011
Model Checking Today

Hardware Model Checking

Software Model Checking
Model Checking Genesis

The paper that started it all

- Clarke and Emerson, *Design and Synthesis of Synchronization Skeletons using branching time temporal logic*

“Proof Construction is Unnecessary in the case of finite state concurrent systems and can be replaced by a model-theoretic approach which will mechanically determine if the system meets a specification expressed in propositional temporal logic”
Intellectual Roots

Two important developments preceded this paper

- **Verification through exhaustive exploration of finite state models**

- **Development of Linear Temporal Logic and its application to specifying system properties**
Model Checking

The model checking approach
(as characterized by Emerson)

- Start with a program that defines a finite state graph M
- Search M for patterns that tell you whether a specification f holds
- Pattern specification is flexible
- The method is efficient in the sizes of M and hopefully also f
- The method is algorithmic
So what exactly is a model?
Basic Notions of Model Theory
The model checking problem

We are interested in deciding whether \(I \models S \) for the special case where

- \(I \) is a Kripke structure
- \(S \) is a temporal logic formula

Today you get to learn what each of these things are

But the high level idea is:

- Unlike axiomatic semantics, where the program was part of the theorem,
- The program will now be the *model*
Kripke Structures as Models

Kripke structure is a FSM with labels

Kripke structure = (S, S0, R, L)
Microwave Example

- $S = \{s_1, s_2, s_3, s_4\}$
- $S_0 = \{s_1\}$
- $R = \{(s_1, s_2), (s_2, s_1), (s_1, s_4), (s_4, s_2), (s_2, s_3), (s_3, s_2), (s_3, s_3)\}$
- $L(s_1) = \{-\text{close}, -\text{start}, -\text{cooking}\}$
- $L(s_2) = \{\text{close}, -\text{start}, -\text{cooking}\}$
- $L(s_3) = \{\text{close}, \text{start}, \text{cooking}\}$
- $L(s_4) = \{-\text{close}, \text{start}, -\text{cooking}\}$
Kripke structures describe computations

A Kripke structure can describe an infinite process
- We can interpret it as an infinite tree

- We need a language to describe properties of paths down the computation tree
Linear Temporal Logic

Let π be a sequence of states in a path down the tree
- $\pi := s_0, s_1, s_2, \ldots$
- Let π_i be a subsequence starting at i

We are going to define a logic to describe properties over paths
Properties over states

State Formulas
- Can be established as true or false on a given state
For paths

Path formulas

- a state formula \(p \) is also a path formula
 - \(p(\pi_i) := p(s_i) \)

- boolean operations on path formulas are path formulas
 - \(f \) and \(g(\pi_i) := f(\pi_i) \) and \(g(\pi_i) \)

- path quantifiers
 - \(G f(\pi_i) := \text{globally } f(\pi_i) = \forall k \geq i \ f(\pi_k) \) (may abbreviate as \(\square \))
 - \(F f(\pi_i) := \text{eventually } f(\pi_i) = \exists k \geq i \ f(\pi_k) \) (may abbreviate as \(\Diamond \))
 - \(X f(\pi_i) := \text{next } f(\pi_i) = f(\pi_{i+1}) \) (may abbreviate as \(\circ \))
 - \(f \ U \ g(\pi_i) := f \text{ until } g = \exists k \geq i \text{ s.t. } g(\pi_k) \text{ and } f(\pi_j) \text{ for } i \leq j < k \)

Given a formula \(f \) and a path \(\pi \),

- if \(f(\pi) \) is true, we say that \(\pi \models f \)
Examples

If you submit your homework (submit) you eventually get a grade back (grade)

You should get your grade before you submit the next homework

If assignment i was submitted before drop date, you should get your grade before drop date
A Kripke structure represents a set of paths

- We want to establish the validity of a formula f under a Kripke structure M and a start state s

problem:

- formula is defined for a path, Kripke structure has many paths
CTL* Logic

Add two extra path quantifiers
- A f := for all paths, f
- E f := for some path, f

Two important subsets:
- LTL : all formulas of the form A f
 - Ex: A(FG p)
- CTL: there must be a path quantifier before every linear operator
 - Ex: AG (EF p)
- The two are different!
Example:

What does the following formula mean
- \(A(F \wedge G \wedge p) \)

How about
- \(A(F \wedge A \wedge G \wedge p) \)

How about
- \(A(F \wedge E \wedge G \wedge p) \)