Introduction to Models and Properties

Computer Science and Artificial Intelligence Laboratory
MIT
Armando Solar-Lezama

Nov 20, 2011
Recap

<table>
<thead>
<tr>
<th>Properties</th>
<th>Type Inference</th>
<th>Program Logics</th>
<th>Abstract Interpretation</th>
<th>Model Checking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties of variables</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Properties at program points</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Flexible</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Push-button</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Model Checking Today

Hardware Model Checking
- part of the standard toolkit for hardware design
 - Intel has used it for production chips since Pentium 4
 - For the Intel Core i7, most pre-silicon validation was done through formal methods (i.e. Model Checking + Theorem Proving)
- many commercial products
 - IBM RuleBase, Synopsys Magellan, ...

Software Model Checking
- Static driver verifier now a commercial Microsoft product
- Java PathFinder used to verify code for mars rover

This doesn’t mean Model Checking is a solved problem
- Far from it
The paper that started it all

- Clarke and Emerson, *Design and Synthesis of Synchronization Skeletons using branching time temporal logic*

“Proof Construction is Unnecessary in the case of finite state concurrent systems and can be replaced by a model-theoretic approach which will mechanically determine if the system meets a specification expressed in propositional temporal logic”
Two important developments preceded this paper

- Verification through exhaustive exploration of finite state models

- Development of Linear Temporal Logic and its application to specifying system properties
Model Checking

The model checking approach
(as characterized by Emerson)
- Start with a program that defines a finite state graph M
- Search M for patterns that tell you whether a specification f holds
- Pattern specification is flexible
- The method is efficient in the sizes of M and hopefully also f
- The method is algorithmic
So what exactly is a model?

Remember our friend ⊢?

- What does this mean? ⊢ x ∧ y ⇒ x
 - The statement above can be established through logical deduction
 - Axiomatic semantics and type theory are deductive
 - The program, together with the desired properties make a theorem
 - We use deduction to prove the theorem
- What about this; is it true? ⊢ x + y == 5
 - We can not really establish this through deduction
 - We can say whether it’s true or false under a given model
 [x=3, y=2] ⊢ x + y == 5
Consider the following sentence:
- $S := \text{The class today was awesome}$

Is this sentence true or false?
- that depends
 - What class is “the class”? What day is “today”?

We can give this sentence an Interpretation
- $I := \text{The class is 6.820, Today is Wednesday Nov 20}$

When an interpretation I makes S true we say that
- I satisfies S
- I is a model of S
- $I \models S$
The model checking problem

We are interested in deciding whether $I \models S$ for the special case where
- I is a Kripke structure
- S is a temporal logic formula

Today you get to learn what each of these things are

But the high level idea is:
- Unlike axiomatic semantics, where the program was part of the theorem,
- The program will now be the model
 - Well, not the program directly, but rather a kripke structure representing the program
Kripke Structures as Models

Kripke structure is a FSM with labels

Kripke structure = (S, S0, R, L)

- S = finite set of states
- S0 ⊆ S = set of initial states
- R ⊆ S x S = transition relation
- L : S → 2^AP = labels each state with a set of atomic propositions
Microwave Example

- $S = \{s_1, s_2, s_3, s_4\}$
- $S_0 = \{s_1\}$
- $R = \{(s_1, s_2), (s_2, s_1), (s_1, s_4), (s_4, s_2), (s_2, s_3), (s_3, s_2), (s_3, s_3)\}$
- $L(s_1) = \{-\text{close}, -\text{start}, -\text{cooking}\}$
- $L(s_2) = \{\text{close}, -\text{start}, -\text{cooking}\}$
- $L(s_3) = \{\text{close}, \text{start}, \text{cooking}\}$
- $L(s_4) = \{-\text{close}, \text{start}, -\text{cooking}\}$

Can the microwave cook with the door open?
Kripke structures describe computations

A Kripke structure can describe an infinite process
- We can interpret it as an infinite tree

- We need a language to describe properties of paths down the computation tree
Linear Temporal Logic

Let π be a sequence of states in a path down the tree
- $\pi := s_0, s_1, s_2, \ldots$
- Let π_i be a subsequence starting at i

We are going to define a logic to describe properties over paths
Properties over states

State Formulas
- Can be established as true or false on a given state
- If $p \in \{AP\}$ then p is a state formula
- If f and g are state formulas, so are $(f \text{ and } g)$, $(\neg f)$, $(f \text{ or } g)$
- Ex. $(\neg \text{ closed } \text{ and } \text{ cooking})$
For paths

Path formulas
- a state formula \(p \) is also a path formula
 - \(p(\pi_i) := p(s_i) \)
- boolean operations on path formulas are path formulas
 - \(f \) and \(g(\pi_i) := f(\pi_i) \) and \(g(\pi_i) \)
- path quantifiers
 - \(G f (\pi_i) := \text{globally } f (\pi_i) = \text{forall } k \geq i \ f (\pi_k) \) (may abbreviate as \(\square \))
 - \(F f (\pi_i) := \text{eventually } f (\pi_i) = \text{exists } k \geq i \ f (\pi_k) \) (may abbreviate as \(\Diamond \))
 - \(X f (\pi_i) := \text{next } f (\pi_i) = f (\pi_{i+1}) \) (may abbreviate as \(\circ \))
 - \(f U g (\pi_i) := f \text{ until } g = \text{exists } k \geq i \ s.t. \ g(\pi_k) \) and \(f(\pi_j) \) for \(i \leq j < k \)

Given a formula \(f \) and a path \(\pi \),
- if \(f(\pi) \) is true, we say that \(\pi \models f \)
Examples

If you submit your homework (submit) you eventually get a grade back (grade)
- $G(\text{submit} \Rightarrow \text{F grade})$

You should get your grade before you submit the next homework
- $G(\text{submit} \Rightarrow X (\neg \text{submit } \cup \text{grade}))$
 - What's wrong with $G(\text{submit} \Rightarrow (\neg \text{submit } \cup \text{grade}))$?

If assignment i was submitted before drop date, you should get your grade before drop date
- $(G(\text{submit}_i \Rightarrow \text{F dropDate})) \Rightarrow ((G(\text{grade}_i \Rightarrow \text{F dropDate})))$
- and $G(\text{submit} \Rightarrow \text{F grade})$
A Kripke structure represents a set of paths

- We want to establish the validity of a formula f under a Kripke structure M and a start state s

problem:
- formula is defined for a path, Kripke structure has many paths
CTL* Logic

Add two extra path quantifiers
- \(A f := \) for all paths, \(f \)
- \(E f := \) for some path, \(f \)

Two important subsets:
- LTL: all formulas of the form \(A f \)
 - Ex: \(A(FG p) \)
- CTL: there must be a path quantifier before every linear operator
 - Ex: \(AG (EF p) \)
- The two are different!
Example:

What does the following formula mean
- \(A(F G p) \)

How about
- \(A(F A G p) \)

How about
- \(A(F E G p) \)