The Increasing Importance of MIC

- More users and hospitals are now using MIC.
- More complexity.
- More applications.
- Discovery.
- Therapy.

What is MIC?

- Goal: achieve extraction of intensity, intensity-based, or knowledge-driven knowledge from medical images.

Imaging Modalities

- CT
- MRI
- PET
- OCT
- Confocal
- Ultrasound
- Positron Emission Tomography
- Ultrasound

Post-processing is Critical

- Given:
 - image data
 - information

- How do you integrate:
 - knowledge
 - interventions

From Research to Clinical Tools

- Questions and answers:
 - Can we do this?
 - Process:
 - Is it worth doing?
 - Tool:
 - Single user
 - Not portable
 - Not portable
 - Not portable

- Translation Requires Tools

- A prototype works for the ground researchers:
 - Tool: paper
 - Disadvantages:
 - Lack of quality in the processing pipeline
 - Tool: not available

The Valley of Death

- The translation pipeline is failing to create tools enabling biomedical research

Group Comparisons

- Clinical imaging studies are similar to the basic science paradigm:
 - You have a hypothesis
 - You have a data set
 - You have an outcome

- Requires fully automated pipelines.

- Requires large computer resources.

- Lack of quality in the processing pipeline can be compensated by doing it again.

Group Comparisons

- COPDGene

- Genetic factors rather than smoking status explain COPD.

- COPD is a complex multifactorial disease with genetic contributions.

- Smoking Status and Genes Interactive:

Subject Specific Analysis

- Targets local pathology:
 - More specific
 - Less ambiguous
 - More direct

- More information-driven interventions:

Phenotype Extraction in the Lung

- Phenotype extraction from lung.

- Phenotype extraction from lung.

Example Traumatic Brain Injury

- Traumatic brain injury.

- Neuronal analysis.

- Techniques required.

Expanded Technological Ability

- SSA challenges:
 - Many patients have visible pathology.
 - Few MIC tools were developed for analysis of healthy tissue.

- SSA techniques are necessary to use such technologies.

Subject Specific Analysis

- Data segmentation:
 - Size-based statistical representation
 - Able to deal with pathology

Subject Specific Analysis

- Subject specific analysis leads to increased use of technology.

- Technology leads to increased use of technology.

- Technology leads to increased use of technology.

Subject Specific Analysis

- Data segmentation:
 - Size-based statistical representation
 - Able to deal with pathology

Subject Specific Analysis

- SSA 2

- Longitudinal changes in the brain.

Subject Specific Analysis

- Data segmentation:
 - Size-based statistical representation
 - Able to deal with pathology

Subject Specific Analysis

- Data segmentation:
 - Size-based statistical representation
 - Able to deal with pathology
Connectograms

Personalized Connectograms

FA Changes Around a Tumor

Dislocation of Normal Anatomy

CTK: An example of OPM

Software Process

3D Slicer

Python in Slicer

Extension Framework

NA-MIC Kit Engineering Team

DTI

Translational Research in MIC

NA-MIC

NA-MIC Community

Why Open Source

Impact Acceleration

OpenIGTLink: API for Devices

Some Features

Why not open source software to develop a complex, long life cycle product?

What are the risks of OS use in a big industrial development?

Why use open source software to develop a complex, long life cycle product?

Connectograms

Personalized Connectograms

FA Changes Around a Tumor

Dislocation of Normal Anatomy

CTK: An example of OPM

Software Process

3D Slicer

Python in Slicer

Extension Framework

NA-MIC Kit Engineering Team

DTI

Translational Research in MIC

NA-MIC

NA-MIC Community

Why Open Source

Impact Acceleration

OpenIGTLink: API for Devices

Some Features

Why not open source software to develop a complex, long life cycle product?

What are the risks of OS use in a big industrial development?

Why use open source software to develop a complex, long life cycle product?
Conclusions

- Free Open Source Software
 - Facilitates translation: bridging the valley of death
 - Is a win-win proposition: the OPM principle
 - Requires proper policies and governance
- Slicer and the NA-MIC kit are a good example of FOSS for translational work

URL's

- National Alliance for Medical Image Computing
 - www.na-mic.org
- Neuroimage Analysis Center
 - nac.spl.harvard.edu
- Surgical Planning Laboratory, Brigham and Women's Hospital
 - spl.harvard.edu
- National Center For Image Guided Therapy
 - www.ncigt.org

Acknowledgments

http://supportferencjolesz.com