Why build Models?

- To predict (identify) something
 - Diagnosis
 - Best therapy
 - Prognosis
 - Cost
- To understand something
 - Structure of model may correspond to structure of reality

Where do models come from?

- Pure induction from data
- Even so, need some “space” of models to explore
- Maximum A-posteriori Probability (MAP)
 \[P(h_i|d) = \alpha P(d|h_i)P(h_i) \]
- Maximum Likelihood (ML)
 \[P(h_i|d) = \alpha P(d|h_i) \]
 - Assumes uniform priors over all hypotheses in the space
- A-priori knowledge, expressed in
 - Structure of the space of models
 - \(P(h_i) \)
 - Adjustments to observed data

An Example

(Russell & Norvig)

- Surprise Candy Corp. makes two flavors of candy: cherry and lime
- Both flavors come in the same opaque wrapper
- Candy is sold in large bags, which have one of the following distributions of flavors, but are visually indistinguishable:
 - \(h_1 \): 100% cherry
 - \(h_2 \): 75% cherry, 25% lime
 - \(h_3 \): 50% cherry, 50% lime
 - \(h_4 \): 25% cherry, 75% lime
 - \(h_5 \): 100% lime
- Relative prevalence of these types of bags is \((0.1, 0.2, 0.4, 0.2, 0.1)\)
- As we eat our way through a bag of candy, predict the flavor of the next piece; actually a probability distribution.
Bayesian Learning

- Calculate the probability of each hypothesis given the data
 \[P(h_i|d) = \alpha P(d|h_i)P(h_i) \]
- To predict the probability distribution over an unknown quantity, \(X \),
 \[P(X|d) = \sum_i P(X|d, h_i)P(h_i|d) = \sum_i P(X|h_i)P(h_i|d) \]
- If the observations \(d \) are independent, then
 \[P(d|h_i) = \prod_j P(d_j|h_i) \]
- E.g., suppose the first 10 candies we taste are all lime
 \[P(d|h_3) = 0.5^{10} \approx 0.001 \]

Learning Hypotheses and Predicting from Them

- (a) probabilities of \(h_i \) after \(k \) lime candies; (b) prob. of next lime

- MAP prediction: predict just from most probable hypothesis
 - After 3 limes, \(h_5 \) is most probable, hence we predict lime
 - Even though, by (b), it’s only 80% probable

Observations

- Bayesian approach asks for prior probabilities on hypotheses!
- Natural way to encode bias against complex hypotheses: make their prior probability very low
- Choosing \(h_{MAP} \) to maximize \(P(h_i|d) = \alpha P(d|h_i)P(h_i) \)
 - is equivalent to minimizing \(-\log P(d|h_i) - \log P(h_i) \)
 - but as we know that entropy is a measure of information, these two terms are
 - # of bits needed to describe the data given hypothesis
 - # bits needed to specify the hypothesis
 - Thus, MAP learning chooses the hypothesis that maximizes compression of the data; Minimum Description Length principle
- Regularization is similar to 2nd term—penalty for complexity
- Assuming uniform priors on hypotheses makes MAP yield \(h_{ML} \), the maximum likelihood hypothesis, which maximizes \(P(h_i|d) = \alpha P(d|h_i) \)

Learning More Complex Hypotheses

- Input:
 - Set of cases, each of which includes
 - numerous features: categorical labels, ordinals, continuous
 - these correspond to the independent variables
- Output:
 - For each case, a result, prediction, classification, etc., corresponding to the dependent variable
 - In regression problems, a continuous output
 - a designated feature the model tries to predict
 - In classification problems, a discrete output
 - the category to which the case is assigned
- Task: learn function \(f(\text{input})=\text{output} \)
 - that minimizes some measure of error
Linear Regression

- General form of the function
 \[y = f(x_1, x_2, \ldots, x_n) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n \]

- For each case:
 \[\hat{y}_i = f(x_{1,i}, x_{2,i}, \ldots, x_{n,i}) = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \cdots + \beta_n x_{n,i} \]

- Find \(\beta_j \) to minimize some function of \((y_i - \hat{y}_i) \) over all \(y_i \)
 - e.g., mean squared error: \(\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n} \)

Logistic Regression

- Logistic function:
 \[f(x) = \frac{1}{1 + e^{-x}} \]

- E.g., how risk factors contribute to probability of death
 - \(\beta_i \) are the log odds ratios \(\log \frac{P(y_i = 1 | x_i)}{P(y_i = 0 | x_i)} \)

More sophisticated models

- Nearest Neighbor Methods
- Classification Trees
- Artificial Neural Nets
- Support Vector Machines
- Bayes Networks (much on this, later)
- Rough Sets, Fuzzy Sets, etc. (see 6.873/HST951 or other ML classes)

How?

- Given: pile of training data, all cases labeled with gold standard outcome
- Learn “best” model
- Gather new test data, also all labeled with outcomes
- Test performance of model on new test data
- Simple, no?