K-means Clustering

Use a greedy algorithm to find an approximation to minimizing

$$\sum_{j=1}^{k} \sum_{i} \left\| x_i - \mu_j \right\|^2$$

clusters
points
distance
from
point to
centroid
Choose k

Randomly choose k examples as initial centroids

while true:
 create k clusters by assigning each example to closest centroid
 compute k new centroids by averaging examples in each cluster
 if centroids don’t change:
 break

What is complexity of one iteration?

k*n*c, where n is number of points and c time required to compute the distance between a pair of points
Example

From Perez et al
Pick Random Centroids
Assign Points to Closest Centroid
Find New Centroids
Observe that assignment doesn’t change
General Issues with K-Means

Result can depend upon initial centroids
Number of iterations
Even final result
Greedy algorithm can find different local optimas

Choosing the “wrong” k can lead to nonsense results
Consider k = 3
How to Choose K

A priori knowledge about application domain
There are two kinds of people in the world: $k = 2$
There are five different types of bacteria: $k = 5$

Search for a good k
Try different values of k and evaluate quality of results
How to Deal with Initial Centroids

Try multiple sets of randomly chosen initial centroids
Select “best” result
Dealing with Dependence on Initial Centroids

Best = kMeans(points)
for t in range(numTrials):
 C = kMeans(points)
 if badness(C) < badness(best):
 best = C

Measuring badness

\[
\text{variance}(c) = \sum_{x \in c} (\text{mean}(c) - x)^2
\]

\[
\text{badness}(C) = \sum_{c \in C} \text{variance}(c)
\]
Cardiac Example

Generate many patients with 4 features each
- Heart rate in beats per minute
- Number of past heart attacks
- Age
- ST elevation (binary)

Generate outcomes based on features
- Probabilistic, not deterministic

Cluster into two clusters, and examine purity of clusters relative to outcomes
<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Age</th>
<th>Gender</th>
<th>Duration</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>P000</td>
<td>89</td>
<td>1</td>
<td>0</td>
<td>66</td>
</tr>
<tr>
<td>P001</td>
<td>59</td>
<td>0</td>
<td>0</td>
<td>72</td>
</tr>
<tr>
<td>P002</td>
<td>73</td>
<td>0</td>
<td>0</td>
<td>73</td>
</tr>
<tr>
<td>P003</td>
<td>56</td>
<td>1</td>
<td>0</td>
<td>65</td>
</tr>
<tr>
<td>P004</td>
<td>75</td>
<td>1</td>
<td>1</td>
<td>68</td>
</tr>
<tr>
<td>P005</td>
<td>68</td>
<td>1</td>
<td>0</td>
<td>56</td>
</tr>
<tr>
<td>P006</td>
<td>73</td>
<td>1</td>
<td>0</td>
<td>75</td>
</tr>
<tr>
<td>P007</td>
<td>72</td>
<td>0</td>
<td>0</td>
<td>65</td>
</tr>
<tr>
<td>P008</td>
<td>73</td>
<td>1</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td>P009</td>
<td>73</td>
<td>0</td>
<td>0</td>
<td>58</td>
</tr>
<tr>
<td>P010</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>75</td>
</tr>
<tr>
<td>P011</td>
<td>79</td>
<td>0</td>
<td>0</td>
<td>31</td>
</tr>
<tr>
<td>P012</td>
<td>81</td>
<td>0</td>
<td>0</td>
<td>58</td>
</tr>
<tr>
<td>P013</td>
<td>89</td>
<td>1</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>P014</td>
<td>81</td>
<td>0</td>
<td>0</td>
<td>70</td>
</tr>
</tbody>
</table>
Cluster
 update
 computeCentroid

tryKMeans

kMeans
Test k-means (k = 2)
Fraction of positives = 0.312
Cluster of size 280 with fraction of positives = 0.286
Cluster of size 220 with fraction of positives = 0.345

Test k-means (k = 3)
Fraction of positives = 0.312
Cluster of size 155 with fraction of positives = 0.361
Cluster of size 197 with fraction of positives = 0.259
Cluster of size 148 with fraction of positives = 0.331

Test k-means (k = 4)
Fraction of positives = 0.312
Cluster of size 126 with fraction of positives = 0.294
Cluster of size 130 with fraction of positives = 0.338
Cluster of size 149 with fraction of positives = 0.289
Cluster of size 95 with fraction of positives = 0.337
Not Impressive

Pretty close to what we would get by a random assignment
What’s going wrong?
What’s the Problem?

Features have very different means and variances
- Heart rate in beats per minute
- Number of past heart attacks
- Age
- ST elevation (binary)

If we use Euclidean distance metric, relevance of number of past heart attacks and ST elevation will be minimized because of relative size

Does this seem like a good idea?

Rescale all features to have same mean and variance

$$x' = \frac{x - \mu_x}{\sigma_x}$$
def scaleAttrs(vals):
 vals = pylab.array(vals)
 mean = sum(vals)/float(len(vals))
 sd = stdDev(vals)
 vals = vals - mean
 return vals/sd

What is the new mean?
What is the new standard deviation?
Let’s try it
Look at Code, and then Run It
Test k-means (k = 2) with scaling
Fraction of positives = 0.312
Cluster of size 254 with fraction of positives = 0.102
Cluster of size 246 with fraction of positives = 0.528

Test k-means (k = 3) with scaling
Fraction of positives = 0.312
Cluster of size 288 with fraction of positives = 0.021
Cluster of size 53 with fraction of positives = 0.792
Cluster of size 159 with fraction of positives = 0.679

Test k-means (k = 4) with scaling
Fraction of positives = 0.312
Cluster of size 125 with fraction of positives = 0.04
Cluster of size 53 with fraction of positives = 0.792
Cluster of size 159 with fraction of positives = 0.679
Cluster of size 163 with fraction of positives = 0.006
Try Scaling Cardiac Attributes

Are you more impressed?
How might we use this to risk stratify a previously unseen patient?
Find cluster with nearest centroid
Special case of k-nearest neighbors