Lecture 2
Bentley Rules for Optimizing Work

Saman Amarasinghe
2014
Definition.
The work of a program (on a given input) is the sum total of all the operations executed by the program.
Algorithm design can produce dramatic reductions in the amount of work it takes to solve a problem, as when a $\Theta(n \lg n)$-time sort replaces a $\Theta(n^2)$-time sort.

Reducing the work of a program does not automatically reduce its running time, however, due to the complex nature of computer hardware:
- instruction-level parallelism (ILP),
- caching,
- vectorization,
- speculation and branch prediction,
- etc.

Nevertheless, reducing the work serves as a good heuristic for reducing overall running time.
How to reduce work?

There is no “theory” of performance programming

Performance Programming is:

- Knowledge of all the layers involved
- Experience in knowing when and how performance can be a problem
- Skill in detecting and zooming in on the problems
- A good dose of common sense

A set of rules for reducing work

- Patterns that occur regularly
- Mistakes many make
- Possibility of substantial performance impact
 - Or slowdown the program 😞
- Similar to “Design Patterns” you learned in 6.005
Optimizing Compilers are also tasked with reducing the work.

- If you are lucky the compiler will do all the work reduction for you
 - Coaxing a reluctant compiler is easier than doing it yourself
- You should only get involved when compiler is unable to do
 - However, this is a moving target
- You don’t want to interfere and make the compiler unable to do what it can

Lecture 10: What compilers can and cannot do
“BENTLEY” OPTIMIZATION RULES
Jon Louis Bentley

Writing Efficient Programs

1982
New Bentley Rules

● Most of Bentley’s original rules dealt with work, but some dealt with the vagaries of computer architecture three decades ago.

● We have created a new set of Bentley rules dealing only with work.

● We shall discuss architecture-dependent optimizations in subsequent lectures.
New “Bentley” Rules

Data structures
- Packing and encoding
- Augmentation
- Precomputation
- Compile–time initialization
- Caching
- Lazy Evaluation
- Sparsity

Loops
- Hoisting
- Sentinels
- Loop unrolling
- Loop fusion
- Eliminating wasted iterations

Logic
- Constant folding and propagation
- Common–subexpression elimination
- Algebraic identities
- Short–circuiting
- Ordering tests
- Combining tests

Functions
- Inlining
- Tail–recursion elimination
- Coarsening recursion
DATA STRUCTURES
The idea of **packing** is to store more than one data value in a machine word. The related idea of **encoding** is to convert data values into a representation requiring fewer bits.

Example: Encoding dates

- The string “February 14, 2008” can be stored in 19 bytes (null terminating byte included), which means that 3 double (64-bit) words must moved whenever a date is manipulated using this representation.
- Assuming that we only store years between 1 C.E. and 4096 C.E., there are about $365.25 \times 4096 \approx 1.5 \text{M}$ dates, which can be encoded in $\lfloor \log(1.5 \times 10^6) \rfloor = 21$ bits, which fits in a single (32-bit) word.
- But querying the month of a date takes more work.
Example: Packing dates

- Instead, let us pack the three fields into a word:

```c
typedef struct {
    unsigned int year: 12;
    unsigned int month: 4;
    unsigned int day: 5;
} date_t;
```

- This packed representation still only takes 21 bits, but the individual fields can be extracted much more quickly than if we had encoded the 1.5M dates as sequential integers.

Sometimes **unpacking** and **decoding** are the optimization, depending on whether more work is involved moving the data or operating on it.
The idea of data-structure augmentation is to add information to a data structure to make common operations do less work.

Example: Appending singly linked lists

- Appending one list to another requires walking the length of the first list to set its null pointer to the start of the second.

- **Augmenting** the list with a tail pointer allows appending to operate in constant time.
Precomputation

The idea of precomputation is to perform calculations in advance so as to avoid doing them at “mission-critical” times.

Example: Binomial coefficients

\[
a \binom{b}{a} = \frac{a!}{b!(a-b)!}
\]

Expensive to compute (lots of multiplications), and watch out for integer overflow for even modest values of \(a\) and \(b\).

Idea: Precompute the table of coefficients when initializing, and do table look-up at runtime.
Precomputation (2)

Pascal’s triangle

```c
unsigned int pascal(unsigned int x, unsigned int y) {
    if(x == 0)
        return 1;
    if(y == 0)
        return 1;
    return pascal(x - 1, y - 1) + pascal(x - 1, y);
}
```
Pascal’s triangle

```c
#define CHOOSE_SIZE 100
unsigned int choose[CHOOSE_SIZE][CHOOSE_SIZE];

void init_choose() {
    for (int n=0; n<CHOOSE_SIZE; ++n) {
        choose[n][0] = 1;
        choose[n][n] = 1;
    }
    for (int n=1; n<CHOOSE_SIZE; ++n) {
        choose[0][n] = 0;
        for (int k=1; k<n; ++k) {
            choose[n][k] = choose[n-1][k-1] + choose[n-1][k];
            choose[k][n] = 0;
        }
    }
}
```
Compile-Time Initialization

The idea of **compile-time initialization** is to store the values of constants during compilation, saving work at execution time.

Example

```c
unsigned int choose[10][10] = {
    { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, },
    { 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, },
    { 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, },
    { 1, 3, 3, 1, 0, 0, 0, 0, 0, 0, },
    { 1, 4, 6, 4, 1, 0, 0, 0, 0, 0, },
    { 1, 5, 10, 10, 5, 1, 0, 0, 0, 0, },
    { 1, 6, 15, 20, 15, 6, 1, 0, 0, 0, },
    { 1, 7, 21, 35, 35, 21, 7, 1, 0, 0, },
};

unsigned int pascal(unsigned int x, unsigned int y) {
    if(x < 10 && y < 10)
        return choose[x][y];
    return pascal(x - 1, y - 1) + pascal(x - 1, y);
}
```
Idea: Create large static tables by metaprogramming.

```c
int main(int argc, const char *argv[]) {
  init_choose();
  printf("unsigned int choose[10][10] = {\n");
  for (int a = 0; a < 10; ++a) {
    printf("  {\n");
    for (int b = 0; b < 10; ++b) {
      printf("%3d, ", choose[a][b]);
    }
    printf("},\n");
  }
  printf("};\n");
}
```
The idea of caching is to store results that have been accessed recently so that the program need not compute them again.

About 30% faster if cache is hit 2/3 of the time.
Lazy Evaluation

Computes only if the value is needed. As in combining precomputing with caching.

Pascal’s triangle

```c
unsigned long choose[100][100];

unsigned long pascal(unsigned int x, unsigned int y) {
  if(x == 0 || y == 0)
    return 1;

  if(choose[x][y] == 0)
    choose[x][y] = pascal(x - 1, y - 1) + pascal(x - 1, y);

  return choose[x][y];
}
```
The idea of exploiting sparsity is to avoid storing and computing on zeroes. “The fastest way to compute is not to compute at all.”

Example: Sparse matrix multiplication

\[
\begin{align*}
3 & 0 & 0 & 0 & 1 & 0 & \div & 1 & \div \\
0 & 4 & 1 & 0 & 5 & 9 & \div & 4 & \div \\
0 & 0 & 0 & 2 & 0 & 6 & \div & 2 & \div \\
5 & 0 & 0 & 3 & 0 & 0 & \div & 8 & \div \\
5 & 0 & 0 & 0 & 8 & 0 & \div & 5 & \div \\
0 & 0 & 0 & 9 & 7 & 0 & & 7
\end{align*}
\]

Dense matrix–vector multiplication performs \(n^2 = 36 \) scalar multiplies, but only 14 entries are nonzero.
Sparsity (2)

Compressed Sparse Row (CSR)

<table>
<thead>
<tr>
<th>rows:</th>
<th>0</th>
<th>2</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>11</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>cols:</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>vals:</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>3</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

\[n = 6 \]
\[\text{nnz} = 14 \]
Sparsity (3)

CSR matrix–vector multiplication

typedef struct {
 int n, nnz;
 int *rows; // length n
 int *cols; // length nnz
 double *vals; // length nnz
} sparse_matrix_t;

void spmv(sparse_matrix_t *A, double *x, double *y) {
 for (int i = 0; i < A->n; i++) {
 y[i] = 0;
 for (int k = A->rows[i]; k < A->rows[i+1]; k++) {
 int j = A->cols[k];
 y[i] += A->vals[k] * x[j];
 }
 }
}

Number of scalar multiplications = nnz, which is potentially much less than n^2.
SPEED LIMIT

PER ORDER OF 6.172

LOGIC
The idea of constant folding and propagation is to evaluate constant expressions and substitute the result into further expressions, all during compilation.

```c
#include <math.h>

void orrery() {
    const double radius = 6371000.0;
    const double diameter = 2 * radius;
    const double circumference = M_PI * diameter;
    const double cross_area = M_PI * radius * radius;
    const double surface_area = circumference * diameter;
    const double volume = 4 * M_PI * radius * radius * radius / 3;
    // ...
}
```

With a sufficiently high optimization level, all the expressions are evaluated at compile-time.
The idea of **common-subexpression elimination** is to avoid computing the same expression multiple times by evaluating the expression once and and storing the result for later use.

\[
\begin{align*}
a &= b + c; \\
b &= a - d; \\
c &= b + c; \\
d &= a - d; \\
a &= b + c; \\
b &= a - d; \\
c &= b + c; \\
d &= b;
\end{align*}
\]

The third line cannot be replaced by \(c = a \), because the value of \(b \) changes in the second line.
The idea of exploiting algebraic identities is to replace expensive logical expressions with algebraic equivalents that require less work.

```c
#include <stdbool.h>
#include <math.h>

typedef struct {
    double x;    // x-coordinate
    double y;    // y-coordinate
    double z;    // z-coordinate
    double r;    // radius of ball
} ball_t;

double square(double x) {
    return x * x;
}

bool collides(ball_t *b1, ball_t *b2) {
    double d = sqrt(square(b1->x - b2->x)
        + square(b1->y - b2->y)
        + square(b1->z - b2->z));
    return d <= b1->r + b2->r;
}
```
Algebraic Identities

The idea of exploiting algebraic identities is to replace expensive logical expressions with algebraic equivalents that require less work.

\[\sqrt{u} \leq v \] exactly when

\[u \leq v^2. \]

```c
#include <stdbool.h>
#include <math.h>

typedef struct {
    double x;   // x-coordinate
    double y;   // y-coordinate
    double z;   // z-coordinate
    double r;   // radius of ball
} ball_t;

double square(double x) {
    return x * x;
}

bool collides(ball_t *b1, ball_t *b2) {
    double d = sqrt(square(b1->x - b2->x) + square(b1->y - b2->y) + square(b1->z - b2->z));
    return d <= b1->r + b2->r;
}
```
Short-Circuiting

When performing a series of tests, the idea of **short-circuiting** is to stop evaluating as soon as you know the answer.

```c
#include <stdbool.h>

bool sum_exceeds(int *A, int n, int limit) {
    int sum = 0;
    for (int i = 0; i < n; i++) {
        sum += A[i];
    }
    return sum > limit;
}
```

Note that `&&` and `||` are short-circuiting logical operators.
Ordering Tests

Consider code that executes a sequence of logical tests. The idea of ordering tests is to perform those that are more often “successful” — a particular alternative is selected by the test — before tests that are rarely successful. Similarly, inexpensive tests should precede expensive ones.

```c
#include <stdbool.h>

bool is_whitespace(char c) {
    if (c == ' ' || c == '
' || c == '	' || c == '
') {
        return true;
    }
    return false;
}
```
#include <stdbool.h>
#include <math.h>

typedef struct {
 double x; // x-coordinate
 double y; // y-coordinate
 double z; // z-coordinate
 double r; // radius of ball
} ball_t;

double square(double x) {
 return x * x;
}

bool collides(ball_t *b1, ball_t *b2) {
 if ((abs(b1->x - b2->x) < b1->r + b2->r) &&
 (abs(b1->y - b2->y) < b1->r + b2->r)) {
 double d = square(b1->x - b2->x)
 + square(b1->y - b2->y)
 + square(b1->z - b2->z);
 return d <= square(b1->r + b2->r);
 } else
 return false;
}
Combining Tests

The idea of **combining tests** is to replace a sequence of tests with one test or switch.

Full adder

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>carry</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

```c
void full_add (int a,
    int b,
    int c,
    int *sum,
    int *carry) {

    if (a == 0) {
        if (b == 0) {
            if (c == 0) {
                *sum = 0;
                *carry = 0;
            } else {
                *sum = 1;
                *carry = 0;
            }
        } else {
            *sum = 1;
            *carry = 1;
        }
    } else {
        if (b == 0) {
            if (c == 0) {
                *sum = 1;
                *carry = 0;
            } else {
                *sum = 0;
                *carry = 1;
            }
        } else {
            *sum = 1;
            *carry = 1;
        }
    }
}
```
The idea of combining tests is to replace a sequence of tests with one test or switch.

Full adder

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>carry</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

For this example, table look-up is even better!

```c
void full_add (int a, int b, int c, int *sum, int *carry) {
    int test = ((a == 1) << 2) | ((b == 1) << 1) | (c == 1);
    switch(test) {
        case 0:
            *sum = 0;
            *carry = 0;
            break;
        case 1:
            *sum = 1;
            *carry = 0;
            break;
        case 2:
            *sum = 1;
            *carry = 0;
            break;
        case 3:
            *sum = 0;
            *carry = 1;
            break;
        case 4:
            *sum = 1;
            *carry = 0;
            break;
        case 5:
            *sum = 0;
            *carry = 1;
            break;
        case 6:
            *sum = 0;
            *carry = 1;
            break;
        case 7:
            *sum = 1;
            *carry = 1;
            break;
    }
}
```
LOOPS
If each program instruction is only executed once

- 3 GHz machine
- Requires 12 Gbytes of instructions a second! (1 CPI, 32 bit instructions)
- A 100 GB disk full of programs done in 8 seconds

Each program instruction has to run millions of times

→ Loops

99% of the program execution time in 10% of the code

- All in inner loops
Hoisting

The goal of hoisting — also called loop-invariant code motion — is to avoid recomputing loop-invariant code each time through the body of a loop.

```c
#include <math.h>

void scale(double *X, double *Y, int N) {
    for (int i = 0; i < N; i++) {
        Y[i] = X[i] * exp(sqrt(M_PI/2));
    }
}
```

```c
#include <math.h>

void scale(double *X, double *Y, int N) {
    double factor = exp(sqrt(M_PI/2));
    for (int i = 0; i < N; i++) {
        Y[i] = X[i] * factor;
    }
}
```
Sentinels are special dummy values placed in a data structure to simplify the logic of boundary conditions, and in particular, the handling of loop-exit tests.

```c
#include <stdint.h>

size_t find(uint64_t *A, size_t n, uint64_t val) {
    for (size_t i = 0; i < n; ++i)
        if (A[i] == val) return i;
    return -1;
}
```

```c
#include <stdint.h>

// Assumes that A[n] exist and //can be clobbered
size_t find(uint64_t *A, size_t n, uint64_t val) {
    A[n] = val;
    size_t i = 0;
    while (A[i] != val) {
        i++;
    }
    if (i == n) return -1;
    return i;
}
```
Loop Unrolling

Loop unrolling attempts to save work by combining several consecutive iterations of a loop into a single iteration, thereby reducing the total number of iterations of the loop and, consequently, the number of times that the instructions that control the loop must be executed.

- **Full** loop unrolling: All iterations are unrolled.
- **Partial** loop unrolling: Several, but not all, of the iterations are unrolled.
Full Loop Unrolling

```c
int sum = 0;
for (int i = 0; i < 10; i++) {
    sum += A[i];
}
```

```c
int sum = 0;
sum += A[0];
sum += A[1];
sum += A[2];
sum += A[3];
sum += A[4];
sum += A[5];
sum += A[6];
sum += A[7];
sum += A[8];
sum += A[9];
```
Partial Loop Unrolling

```c
int sum = 0;
for (int i = 0; i < n; ++i) {
    sum += A[i];
}
```

```c
int sum = 0;
int j;
for (j = 0; j < n - 3; j += 4) {
    sum += A[j];
    sum += A[j+1];
    sum += A[j+2];
    sum += A[j+3];
}
for (int i = j; i < n; ++i) {
    sum += A[i];
}
```
The idea of **loop fusion** — also called **jamming** — is to combine multiple loops over the same index range into a single loop body, thereby saving the overhead of loop control.

```c
for (int i = 0; i < n; ++i) {
}
for (int i = 0; i < n; ++i) {
}
```
The idea of eliminating wasted iterations is to modify loop bounds to avoid executing loop iterations over essentially empty loop bodies.

```c
for (int i = 0; i < n; ++i) {
    for (int j = 0; j < n; ++j) {
        if (i > j) {
            int temp = A[i][j];
            A[i][j] = A[j][i];
            A[j][i] = temp;
        }
    }
}
```

```c
for (int i = 1; i < n; ++i) {
    for (int j = 0; j < i; ++j) {
        int temp = A[i][j];
        A[i][j] = A[j][i];
        A[j][i] = temp;
    }
}
```
FUNCTIONS
Inlining

The idea of **inlining** is to avoid the overhead of a function call by replacing a call to the function with the body of the function itself.

```c
double square(double x) {
    return x * x;
}

double sum_of_squares(double *A, int n) {
    double sum = 0.0;
    for (int i = 0; i < n; ++i) {
        sum += square(A[i]);
    }
    return sum;
}
```
The idea of **inlining** is to avoid the overhead of a function call by replacing a call to the function with the body of the function itself.

```c
double square(double x) {
    return x * x;
}

double sum_of_squares(double *A, int n) {
    double sum = 0.0;
    for (int i = 0; i < n; ++i) {
        sum += square(A[i]);
    }
    return sum;
}

inline double square(double x) {
    return x * x;
}

double sum_of_squares(double *A, int n) {
    double sum = 0.0;
    for (int i = 0; i < n; ++i) {
        sum += square(A[i]);
    }
    return sum;
}
```

Inlined functions can be just as efficient as macros, and they are better structured.
Tail–Recursion Elimination

The idea of **tail-recursion elimination** is to replace a recursive call that occurs as the last step of a function with a branch, saving function-call overhead.

```c
void quicksort(int *A, int n) {
    if (n > 1) {
        int r = partition(A, n);
        quicksort (A, r);
        quicksort (A + r + 1, n - r - 1);
    }
}
```

```c
void quicksort(int *A, int n) {
    while (n > 1) {
        int r = partition(A, n);
        quicksort (A, r);
        A += r + 1;
        n -= r + 1;
    }
}
```
Coarsening Recursion

The idea of **coarsening recursion** is to increase the size of the base case and handle it with more efficient code that avoids function-call overhead.

```c
void quicksort(int *A, int n) {
    while (n > 1) {
        int r = partition(A, n);
        quicksort (A, r);
        A += r + 1;
        n -= r + 1;
    }
}
```

```c
#define THRESHOLD 10
void quicksort(int *A, int n) {
    while (n > THRESHOLD) {
        int r = partition(A, n);
        quicksort (A, r);
        A += r + 1;
        n -= r + 1;
    }
    // insertion sort for small arrays
    for (int j = 1; j < n; ++j) {
        int key = A[j];
        int i = j - 1;
        while (i >= 0 && A[i] > key) {
            A[i+1] = A[i];
            --i;
        }
        A[i+1] = key;
    }
}
```
SUMMARY
Bentley Rules

Data structures
- Packing and encoding
- Augmentation
- Precomputation
- Compile–time initialization
- Caching
- Sparsity

Loops
- Hoisting
- Sentinels
- Loop unrolling
- Loop fusion
- Eliminating wasted iterations

Logic
- Constant folding and propagation
- Common–subexpression elimination
- Algebraic identities
- Short–circuited
- Ordering tests
- Combining tests

Functions
- Inlining
- Tail–recursion elimination
- Coarsening recursion
Conclusions

● Avoid premature optimization. First get correct working code. Then optimize.
● Reducing the work of a program does not necessarily decrease its running time, but it is a good heuristic.
● The compiler automates many low-level optimizations. Get the compiler to do the work whenever possible.
● To tell whether the compiler is actually performing a particular optimization, look at the assembly code

If you find interesting examples of work optimization, please let me know!