Graphical Object Model Notation
6.170 / Software Studio / Fall 2015

\(S \) is a set

\(S \) is an abstract set: all its elements are contained by subsets that extend it

\(S \) is a set with multiplicity \(m \)

\(S \) is a set with multiplicity \(m \);
If present, \(m \) must be ? or ! and defaults to ! if missing

\(S1 \) and \(S2 \) are subsets of \(S \)
\(S1 \) and \(S2 \) are disjoint subsets of \(S \)

\(S \) is a relation from \(S \) to \(T \) with multiplicities \(m \) and \(n \)
Maps \(m \) atoms in \(S \) to each atom in \(T \), and each atom in \(S \) to \(n \) atoms in \(T \)
Can be written textually as \(R: S \ m \rightarrow n \ T \)

\(S1 \) is a static subset of \(S \): a member of \(S \) cannot be in \(S1 \) at some time and not in \(S1 \) (but still in \(S \)) at some other time

Multiplicity symbols
- * any number (default)
- ? zero or one
- ! exactly one
- + one or more