Lecture 4

Modeling Biological Sequences using Hidden Markov Models
<table>
<thead>
<tr>
<th>Project</th>
<th>Sets</th>
<th>Week</th>
<th>Date</th>
<th>Topic</th>
<th>Lec</th>
<th>Topic</th>
<th>Read*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Describe your previous research, areas of interest in computational biology, type of project that best fits your interests. Post in a profile that lets your classmates know you & find potential partners.</td>
<td>PS1 out onL1-L5</td>
<td>1</td>
<td>Thu, Sep 8</td>
<td>Introduction</td>
<td>L1</td>
<td>Intro: Biology, Algorithms, Machine Learning, Course Overview</td>
<td>1</td>
</tr>
<tr>
<td>Project profile due Tue 9/27</td>
<td></td>
<td></td>
<td>Fri, Sep 9</td>
<td></td>
<td>R1</td>
<td>Recitation 1: Biology and Probability Review</td>
<td></td>
</tr>
<tr>
<td>Identify previous project proposals, recent papers, and potential partners that match your areas of interest. List initial project ideas and partners.</td>
<td>PS2 out onL6-R4</td>
<td>4</td>
<td>Thu, Sep 27</td>
<td>Module I: Aligning and Modeling Genomes</td>
<td>L3</td>
<td>Alignment I: Dynamic Programming, Global and local alignment</td>
<td>2</td>
</tr>
<tr>
<td>Project team/ideas due Tue 10/4</td>
<td></td>
<td></td>
<td>Fri, Sep 30</td>
<td></td>
<td>R2</td>
<td>Recitation 2: Deriving Parameters of Alignment, Multiple Alignment</td>
<td></td>
</tr>
<tr>
<td>Form teams of two, specify project goals, division of work, milestones, datasets, challenges, Prepare slide presentation for the class and the mentors. Project proposal due Tue 10/18. Presented to mentor on Fri 10/21</td>
<td>PS3 out onL10-R6</td>
<td>6</td>
<td>Tue, Oct 11</td>
<td>Module II: Gene Expression and Networks</td>
<td>L8</td>
<td>Epigenomics: ChIP-Seq, Read mapping, Peak calling, IGR, Chromatin states</td>
<td>15, 16</td>
</tr>
<tr>
<td>Project planning: research areas, initial ideas, type of project, mentor matching, finding partners 32D-507</td>
<td></td>
<td></td>
<td>Thu, Oct 13</td>
<td></td>
<td>L9</td>
<td>Three-dimensional chromatin interactions: 3C, 5C, HiC, ChIP-Seq</td>
<td>19</td>
</tr>
<tr>
<td>Evaluate/discuss three peer proposals, NIH review format. Reviews due Fri 10/28</td>
<td>PS4 out onL13-R8</td>
<td>8</td>
<td>Tue, Oct 25</td>
<td>Module IV: Population and Disease Genetics</td>
<td>L10</td>
<td>Regulatory Motifs: Discovery, Representation, PBMs, Gibbs Sampling, EM</td>
<td>17</td>
</tr>
<tr>
<td>Reviews returned Tue 11/1</td>
<td></td>
<td></td>
<td>Thu, Oct 27</td>
<td></td>
<td>L11</td>
<td>Networks I: Neural Networks, Belief Networks, Deep learning</td>
<td>20, 21</td>
</tr>
<tr>
<td>Address peer evaluations, revise aims, scope, list of final deliverables / goals. Response due Thu 11/10</td>
<td>PS5 out onL17-R9</td>
<td>10</td>
<td>Tue, Nov 8</td>
<td>Module V: Comparative Genomics and Evolution</td>
<td>L17</td>
<td>Comparative genomics and evolutionary signatures</td>
<td>4</td>
</tr>
<tr>
<td>Midcourse report due Wed 11/23</td>
<td></td>
<td></td>
<td>Thu, Nov 10</td>
<td></td>
<td>L18</td>
<td>Genome Scale Evolution, Genome Duplication</td>
<td>5, 6</td>
</tr>
<tr>
<td>Complete your milestones, finalize progress report, conference publication format. As part of report, comment on your overall project experience. Written report due Sun 12/11</td>
<td>No more posts (work on your final project) (work on your final project)</td>
<td>12</td>
<td>Tue, Nov 22</td>
<td>Quiz</td>
<td>In Class Quiz (the only quiz - the class has no final exam) - covers L1-L20, R1-R9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conference format slide pres. Talks on Tue 12/13</td>
<td></td>
<td></td>
<td>Thu, Nov 24</td>
<td></td>
<td>No recitation, thanksgiving break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R11</td>
<td>Recitation 11: Presentation Tips - Intro, discussion, Slides, Presentation skills</td>
<td>30, 34, 35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R12</td>
<td>Recitation 10: Project Feedback, results, interpretation, directions</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R13</td>
<td>Recitation 9: Phylogenetic distance metrics, Coalescent Process</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- **Module 1: Computational foundations**
 - Dynamic programming: exploring exponential spaces in poly-time
 - Linear-time string matching, Hashing, Content-based indexing
 - Hidden Markov Models: decoding, evaluation, parsing, learning
- **Last week: Sequence alignment / comparative genomics**
 - Local/global alignment: infer nucleotide-level evolutionary events
 - Database search: scan for regions that may have common ancestry
- **This week: Modeling genomes / exon / CpG island finding**
 - Modeling class of elements, recognizing members of a class
 - Application to gene finding, conservation islands, CpG islands
We have learned how to align sequences to other sequences

- **L2: Sequence alignment**
 - Dynamic programming, duality path ↔ alignment
 - Global / local alignment, general gap penalties
- **L3: Rapid string search**
 - Exact string match, semi-numerical matching
 - Database search: Hashing, BLAST, variations
- **L17: Comparative genomics: evolutionary signatures**
 - Tell me how you evolve, I’ll tell you what you are
 - Identifying conserved elements through evolution
- **L18: Whole-genome assembly/alignment/duplication:**
 - Finding all common substrings within/across species
 - Contigs/scaffolds, string graphs, glocal alignment paths
- **Problem set 1 due next Tues, project planning**
Today: apply these ideas to model DNA sequences

...GTACTCACCAGGTTACAGGATTATGGGTTACAGGTAACCGTT...

- What to do with a completely new piece of DNA
 - Align it to things we know about (database search)
 - Align it to things we don’t know about (assembly)
- Stare at it
 - Non-standard nucleotide composition?
 - Interesting k-mer frequencies?
 - Recurrent patterns?
- Model it
 - Make some hypotheses about it
 - Build a ‘generative model’ to describe it
 - Find sequences of similar type

How do we model DNA sequences?
Modeling biological sequences with HMMs
(a.k.a. What to do with big unlabelled chunks of DNA)

- **Ability to emit** DNA sequences of a certain *type*
 - Not exact alignment to previously known gene
 - Preserving ‘properties’ of *type*, not identical sequence
- **Ability to recognize** DNA sequences of a certain type (state)
 - What (hidden) state is most likely to have generated observations
 - Find set of states and transitions that generated a long sequence
- **Ability to learn** distinguishing characteristics of each state
 - Training our generative models on large datasets
 - Learn to classify unlabelled data
Why Probabilistic Sequence Modeling?

• Biological data is noisy

• Probability provides a calculus for manipulating models

• Not limited to yes/no answers – can provide “degrees of belief”

• Many common computational tools based on probabilistic models

• Our tools:
 – Markov Chains and Hidden Markov Models (HMMs)
Markov Chains and Hidden Markov Models
Andrey Markov (1856-1922)
Predicting tomorrow’s weather

- Markov Chain
- Hidden Markov Model

- What you see is what you get: next state only depends on current state (no memory)
- Hidden state of the world (e.g. storm system) determines emission probabilities
- State transitions governed by a Markov chain

All observed

Transitions

Emissions
HMM nomenclature for this course

- Vector $\mathbf{x} = \text{Sequence of observations}$
- Vector $\mathbf{\pi} = \text{Hidden path (sequence of hidden states)}$
- Transition matrix $\mathbf{A} = a_{kl} = \text{probability of } k \rightarrow l \text{ state transition}$
- Emission vector $\mathbf{E} = e_k(x_i) = \text{prob. of observing } x_i \text{ from state } k$
- Bayes’s rule: Use $P(x_i|\pi_i=k)$ to estimate $P(\pi_i=k|x_i)$

Transitions: $a_{kl} = P(\pi_i=l|\pi_{i-1}=k)$
Transition probability from state k to state l

Emissions: $e_k(x_i) = P(x_i|p_i=k)$
Emission probability of symbol x_i from state k
Components of a Markov Chain

Definition: A *Markov chain* is a triplet (Q, ρ, A), where:

- Q is a finite set of states. Each state corresponds to a symbol in the alphabet Σ
- ρ is the initial state probabilities.
- A is the state transition probabilities, denoted by a_{st} for each s, t in Q.
- For each s, t in Q the transition probability is: $a_{st} \equiv P(x_i = t | x_{i-1} = s)$

Output: The output of the model is the set of states at each instant time => the set of states are observable

Property: The probability of each symbol x_i depends only on the value of the preceding symbol x_{i-1}: $P(x_i | x_{i-1}, ..., x_1) = P(x_i | x_{i-1})$

Formula: The probability of the sequence: $P(x) = P(x_L, x_{L-1}, ..., x_1) = P(x_L | x_{L-1}) P(x_{L-1} | x_{L-2}) ... P(x_2 | x_1) P(x_1)$

Slide credit: Serafim Batzoglou
Components of an HMM (Hidden Markov Model)

Definition: An HMM is a 5-tuple \((Q, V, p, A, E)\), where:

- \(Q\) is a finite set of states, \(|Q|=N\)
- \(V\) is a finite set of observation symbols per state, \(|V|=M\)
- \(p\) is the initial state probabilities.
- \(A\) is the state transition probabilities, denoted by \(a_{st}\) for each \(s, t\) in \(Q\).
 - For each \(s, t\) in \(Q\) the transition probability is: \(a_{st} \equiv P(x_i = t | x_{i-1} = s)\)
- \(E\) is a probability emission matrix, \(e_{sk} \equiv P(v_k at time t | q_t = s)\)

Output: Only emitted symbols are observable by the system but not the underlying random walk between states \(\rightarrow \) “hidden”

Property: Emissions and transitions are dependent on the current state only and not on the past.

Slide credit: Serafim Batzoglou
The six algorithmic settings for HMMs

One path

1. Scoring x, one path
 \[P(x, \pi) \]
 Prob of a path, emissions

2. Scoring x, all paths
 \[P(x) = \sum_{\pi} P(x, \pi) \]
 Prob of emissions, over all paths

3. Viterbi decoding
 \[\pi^* = \arg\max_{\pi} P(x, \pi) \]
 Most likely path

All paths

4. Posterior decoding
 \[\pi^\Lambda = \{\pi_i | \pi_i = \arg\max_k \sum_{\pi} P(\pi_i = k | x)\} \]
 Path containing the most likely state at any time point.

Learning

5. Supervised learning, given π
 \[\Lambda^* = \arg\max_{\Lambda} P(x, \pi | \Lambda) \]
 Viterbi training, best path

6. Unsupervised learning
 \[\Lambda^* = \arg\max_{\Lambda} \sum_{\pi} P(x, \pi | \Lambda) \]
 Baum-Welch training, over all paths
Examples of HMMs

The dishonest casino
The dishonest genome
... and many more
A casino has two dice:

- **Fair die**
 \[P(1) = P(2) = P(3) = P(5) = P(6) = 1/6 \]

- **Loaded die**
 \[P(1) = P(2) = P(3) = P(4) = P(5) = 1/10 \]
 \[P(6) = 1/2 \]

Casino player switches between fair and loaded die on average once every 20 turns

Game:
1. You bet $1
2. You roll (always with a fair die)
3. Casino player rolls (maybe with fair die, maybe with loaded die)
4. Highest number wins $2
The dishonest casino model

- **Hidden (model)**
 - Fair
 - Loaded

- **Observed (world)**
 - \(P(1|\text{Fair}) = 1/6 \)
 - \(P(2|\text{Fair}) = 1/6 \)
 - \(P(3|\text{Fair}) = 1/6 \)
 - \(P(4|\text{Fair}) = 1/6 \)
 - \(P(5|\text{Fair}) = 1/6 \)
 - \(P(6|\text{Fair}) = 1/6 \)
 - \(P(1|\text{L}) = 1/10 \)
 - \(P(2|\text{L}) = 1/10 \)
 - \(P(3|\text{L}) = 1/10 \)
 - \(P(4|\text{L}) = 1/10 \)
 - \(P(5|\text{L}) = 1/10 \)
 - \(P(6|\text{L}) = 1/2 \)

Slide credit: Serafim Batzoglou
The dishonest genome model

Virus

"Self"

P(A|Virus) = 1/6
P(T|Virus) = 1/6
P(C|Virus) = 1/3
P(G|Virus) = 1/3

P(A|Self) = 1/4
P(T|Self) = 1/4
P(C|Self) = 1/4
P(G|Self) = 1/4

Observed (world)

Hidden (model)

Slide credit: Serafim Batzoglou
Examples of HMMs for genome annotation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Topology / Transitions</td>
<td>2 states, different nucleotide composition</td>
<td>2 states, different conservation levels</td>
<td>2 states, different trinucleotide composition</td>
<td>2 states, different evolutionary signatures</td>
<td>~20 states, different composition/conservation, specific structure</td>
<td>40 states, different chromatin mark combinations</td>
</tr>
<tr>
<td>Hidden States / Annotation</td>
<td>GC-rich / AT-rich</td>
<td>Conserved / non-conserved</td>
<td>Coding exon / non-coding (intron or intergenic)</td>
<td>Coding exon / non-coding (intron or intergenic)</td>
<td>First/last/middle coding exon, UTRs, intron1/2/3, intergenic, (+/- strand)</td>
<td>Enhancer / promoter / transcribed / repressed / repetitive</td>
</tr>
<tr>
<td>Emissions / Observations</td>
<td>Nucleotides</td>
<td>Level of conservation</td>
<td>Triplets of nucleotides</td>
<td>Nucleotide triplets, conservation levels</td>
<td>Codons, nucleotides, splice sites, start/stop codons</td>
<td>Vector of chromatin mark frequencies</td>
</tr>
</tbody>
</table>
Running the model: Probability of a sequence

What is the joint probability of observing x and a specific path π:

$$\pi = \text{Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair}$$

and rolls

$$x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4$$

Joined probability $P(x, \pi) = P(x|\pi)P(\pi) = P(\text{emissions}|\text{path}) \times P(\text{path})$

$$p = \frac{1}{2} \times P(1 | \text{Fair}) \times P(\text{Fair}_{i+1} | \text{Fair}_i) \times P(2 | \text{Fair}) \times P(\text{Fair} | \text{Fair}) \times \ldots \times P(4 | \text{Fair})$$

$$= \frac{1}{2} \times (1/6)^{10} \times (0.95)^9$$

$$= 5.2 \times 10^{-9}$$

Why is p so small?

Slide credit: Serafim Batzoglou
Running the model: Probability of a sequence

What is the likelihood of

\[\pi = \text{Load, Load, Load, Load, Load, Load, Load, Load, Load, Load, Loaded} \]

and rolls

\[x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4 \]

emission transition emission transition emission

\[p = \frac{1}{2} \times P(1 \mid \text{Load}) \times P(\text{Load}_{i+1} \mid \text{Load}_i) \times P(2 \mid \text{Load}) \times P(\text{Load} \mid \text{Load}) \times \ldots \times P(4 \mid \text{Fair}) \]

\[= \frac{1}{2} \times \left(\frac{1}{10}\right)^8 \times \left(\frac{1}{2}\right)^2 \times (0.95)^9 \]

\[= 7.9 \times 10^{-10} \]

Compare the two!
Comparing the two paths

Two sequence paths:
- \(P(x, \text{all-Fair}) = 5.2 \times 10^{-9} \) (very small)
- \(P(x, \text{all-Loaded}) = 7.9 \times 10^{-10} \) (very very small)

Likelihood ratio:
- \(P(x, \text{all-Fair}) \) is 6.59 times more likely than \(P(x, \text{all-Loaded}) \)

It is 6.59 times more likely that the die is fair all the way, than loaded all the way.

Slide credit: Serafim Batzoglou
What about partial runs and die switching

What is the likelihood of

$$\pi = \text{Fair, Fair, Fair, Fair, Load, Load, Load, Load, Fair, Fair}$$

and rolls

$$x = 1, 2, 1, 5, 6, 2, 1, 6, 2, 4$$

$$p = \frac{1}{2} \times P(1 \mid \text{Fair}) P(\text{Fair}_{i+1} \mid \text{Fair}_i) P(2 \mid \text{Fair}) P(\text{Fair} \mid \text{Fair}) \ldots P(4 \mid \text{Fair})$$

$$= \frac{1}{2} \times (1/10)^2 \times (1/2)^2 \times (1/6)^5 \times (0.95)^7 \times (0.05)^2$$

$$= 2.8 \times 10^{-10}$$

Much less likely, due to high cost of transitions
Let the sequence of rolls be:
\[x = 1, 6, 6, 5, 6, 2, 6, 6, 3, 6 \]

Now, what is the likelihood \(\pi = F, F, \ldots, F \)?
\[
\frac{1}{2} \times \left(\frac{1}{6}\right)^{10} \times (0.95)^9 = 0.5 \times 10^{-9}, \text{ same as before}
\]

What is the likelihood \(\pi = L, L, \ldots, L \)?
\[
\frac{1}{2} \times \left(\frac{1}{10}\right)^{4} \times \left(\frac{1}{2}\right)^{6} \times (0.95)^9 = 0.5 \times 10^{-7}
\]

So, it is 100 times more likely the die is loaded
<table>
<thead>
<tr>
<th>Scoring</th>
<th>Decoding</th>
<th>Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Scoring (x), one path</td>
<td>3. Viterbi decoding</td>
<td>5. Supervised learning, given (\pi)</td>
</tr>
<tr>
<td>(P(x, \pi))</td>
<td>(\pi^* = \arg\max_\pi P(x, \pi))</td>
<td>(\Lambda^* = \arg\max_\Lambda P(x, \pi</td>
</tr>
<tr>
<td>Prob of a path, emissions</td>
<td>Most likely path</td>
<td>Viterbi training, best path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Scoring (x), all paths</td>
<td>4. Posterior decoding</td>
<td>6. Unsupervised learning</td>
</tr>
<tr>
<td>(P(x) = \sum_\pi P(x, \pi))</td>
<td>(\pi^\wedge = { \pi_i \mid \pi_i = \arg\max_k \sum_\pi P(\pi_i = k</td>
<td>x) })</td>
</tr>
<tr>
<td>Prob of emissions, over all paths</td>
<td>Path containing the most likely state at any time point.</td>
<td>Baum-Welch training, over all paths</td>
</tr>
</tbody>
</table>

The six algorithmic settings for HMMs

- **One path**
 - Scoring
 - \(P(x, \pi) \)
 - Prob of a path, emissions
 - Decoding
 - Viterbi decoding
 - \(\pi^* = \arg\max_\pi P(x, \pi) \)
 - Most likely path
 - Learning
 - Supervised learning
 - \(\Lambda^* = \arg\max_\Lambda P(x, \pi | \Lambda) \)
 - Viterbi training, best path

- **All paths**
 - Scoring
 - \(P(x) = \sum_\pi P(x, \pi) \)
 - Prob of emissions, over all paths
 - Decoding
 - Posterior decoding
 - \(\pi^\wedge = \{ \pi_i \mid \pi_i = \arg\max_k \sum_\pi P(\pi_i = k | x) \} \)
 - Path containing the most likely state at any time point.
 - Learning
 - Unsupervised learning
 - \(\Lambda^* = \arg\max_\Lambda \sum_\pi P(x, \pi | \Lambda) \)
 - Baum-Welch training, over all paths
3. DECODING:
What was the sequence of hidden states?

Given: Model parameters $e_i(\cdot), a_{ij}$
Given: Sequence of emissions x

Find: Sequence of hidden states π
Finding the optimal path

• We can now evaluate any path through hidden states, given the emitted sequences

• How do we find the best path?

• Optimal substructure! Best path through a given state is:
 – Best path to previous state
 – Best transition from previous state to this state
 – Best path to the end state

⇒ Viterbi algorithm
 – Define $V_k(i) = \text{Probability of the most likely path through state } \pi_i=k$
 – Compute $V_k(i+1)$ as a function of $\max_{k'} \{ V_{k'}(i) \}$

 – $V_k(i+1) = e_k(x_{i+1}) * \max_j a_{jk} V_j(i)$

⇒ Dynamic Programming
Andrew J. Viterbi, Massachusetts Beta '57, as a new teacher in 1963.
Finding the most likely path

- Find path π^* that maximizes total joint probability $P[x, \pi]$

- $P(x, \pi) = a_{0\pi_1}^* \prod_i e_{\pi_i}(x_i) \times a_{\pi_i\pi_{i+1}}$

Slide credit: Serafim Batzoglou
Calculate maximum $P(x, \pi)$ recursively

- Assume we know V_j for the previous time step $(i-1)$

- Calculate $V_k(i) = \max_j \left(e_k(x_i) \times \prod_{j=1}^{i-1} a_{jk} \times V_j(i-1) \right)$

Slide credit: Serafim Batzoglou
The Viterbi Algorithm

Input: $x = x_1 \ldots x_N$

Initialization:
\[V_0(0) = 1, \quad V_k(0) = 0, \text{ for all } k > 0 \]

Iteration:
\[V_k(i) = e^x_i \times \max_j a_{jk} \cdot V_j(i-1) \]

Termination:
\[P(x, \pi^*) = \max_k V_k(N) \]

Traceback:
Follow max pointers back
Similar to aligning states to seq

In practice:
Use log scores for computation

Running time and space:
Time: $O(K^2N)$
Space: $O(KN)$

Slide credit: Serafim Batzoglou
<table>
<thead>
<tr>
<th>Scoring</th>
<th>Decoding</th>
<th>Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Scoring x, one path $P(x, \pi)$</td>
<td>3. Viterbi decoding $\pi^* = \arg\max_{\pi} P(x, \pi)$</td>
<td>5. Supervised learning, given π $\Lambda^* = \arg\max_{\Lambda} P(x, \pi</td>
</tr>
<tr>
<td>Prob of a path, emissions</td>
<td>Most likely path</td>
<td>6. Unsupervised learning. $\Lambda^* = \arg\max_{\Lambda} \sum_\pi P(x, \pi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viterbi training, best path</td>
</tr>
<tr>
<td>2. Scoring x, all paths $P(x) = \sum_\pi P(x, \pi)$</td>
<td>4. Posterior decoding $\pi^\land = {\pi_i</td>
<td>\pi_i = \arg\max_k \sum_\pi P(\pi_i=k</td>
</tr>
<tr>
<td>Prob of emissions, over all paths</td>
<td>Path containing the most likely state at any time point.</td>
<td>Baum-Welch training, over all paths</td>
</tr>
</tbody>
</table>

The six algorithmic settings for HMMs:

1. **One path**
 - Scoring: $P(x, \pi)$
 - Decoding: $\pi^* = \arg\max_{\pi} P(x, \pi)$
 - Learning: $\Lambda^* = \arg\max_{\Lambda} P(x, \pi | \Lambda)$

2. **All paths**
 - Scoring: $P(x) = \sum_\pi P(x, \pi)$
 - Decoding: $\pi^\land = \{\pi_i | \pi_i = \arg\max_k \sum_\pi P(\pi_i=k | x)\}$
 - Learning: $\Lambda^* = \arg\max_{\Lambda} \sum_\pi P(x, \pi | \Lambda)$

Notes
- In supervised learning, the model parameters are given.
- Unsupervised learning methods estimate the model parameters without explicit labeled data.
- Viterbi training is a specific case of supervised learning.
- Baum-Welch training is a specific case of unsupervised learning.
2. EVALUATION
(how well does our model capture the world)

Given: Model parameters $e_i(\cdot)$, a_{ij}

Given: Sequence of emissions x

Find: $P(x|M)$, summed over all possible paths π
Simple: Given the model, generate some sequence x

Given a HMM, we can generate a sequence of length n as follows:

1. Start at state π_1 according to prob $a_{0\pi_1}$
2. Emit letter x_1 according to prob $e_{\pi_1}(x_1)$
3. Go to state π_2 according to prob $a_{\pi_1\pi_2}$
4. ... until emitting x_n

We have some sequence x that can be emitted by p. Can calculate its likelihood. However, in general, many different paths may emit this same sequence x. How do we find the total probability of generating a given x, over any path?

Slide credit: Serafim Batzoglou
Complex: Given x, was it generated by the model?

Given a sequence x,
What is the probability that x was generated by the model (using any path)?

\[P(x) = \sum_\pi P(x, \pi) = \sum_\pi P(x|\pi) P(\pi) \]

- (weighted average of conditional probability, summed over all paths, weighted by each path’s probability)

- Challenge: exponential number of paths
Calculate probability of emission over all paths

• Each path has associated probability
 – Some paths are likely, others unlikely: sum them all up
 → Return total probability that emissions are observed, summed over all paths
 – Viterbi path is the most likely one
 • How much ‘probability mass’ does it contain?

• (cheap) alternative:
 – Calculate probability over maximum (Viterbi) path π^*
 – Good approximation if Viterbi has highest density
 – BUT: incorrect

• (real) solution
 – Calculate the exact sum iteratively
 • $P(x) = \sum_{\pi} P(x,\pi)$
 – Can use dynamic programming
The Forward Algorithm – derivation

Define the forward probability:

\[f_l(i) = P(x_1 \ldots x_i, \pi_i = l) \]

\[= \sum_{\pi_1 \ldots \pi_{i-1}} P(x_1 \ldots x_{i-1}, \pi_1, \ldots, \pi_{i-2}, \pi_{i-1}, \pi_i = l) \cdot e_l(x_i) \]

\[= \sum_k \sum_{\pi_1 \ldots \pi_{i-2}} P(x_1 \ldots x_{i-1}, \pi_1, \ldots, \pi_{i-2}, \pi_{i-1} = k) \cdot a_{kl} \cdot e_l(x_i) \]

\[= \sum_k f_k(i-1) \cdot a_{kl} \cdot e_l(x_i) \]

\[= e_l(x_i) \sum_k f_k(i-1) \cdot a_{kl} \]
Calculate total probability $\Sigma_{\pi} P(x, \pi)$ recursively

- Assume we know f_j for the previous time step (i-1)

- Calculate $f_k(i) = e_k(x_i) * \sum_j (f_j(i-1) \times a_{jk})$

Slide credit: Serafim Batzoglou
The Forward Algorithm

Input: $x = x_1 \ldots x_N$

Initialization:
- $f_0(0) = 1$, $f_k(0) = 0$, for all $k > 0$

Iteration:
- $f_k(i) = e^{K(x_i)} \times \sum_j a_{jk} f_j(i-1)$

Termination:
- $P(x, \pi^*) = \sum_k f_k(N)$

In practice:
- Sum of log scores is difficult
 - approximate $\exp(1+p+q)$
 - scaling of probabilities

Running time and space:
- Time: $O(K^2N)$
- Space: $O(KN)$

Slide credit: Serafim Batzoglou
<table>
<thead>
<tr>
<th>The six algorithmic settings for HMMs</th>
<th>One path</th>
<th>All paths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scoring
1. Scoring x, one path</td>
<td>$P(x, \pi)$</td>
<td>$P(x) = \sum_\pi P(x, \pi)$</td>
</tr>
<tr>
<td></td>
<td>Prob of a path, emissions</td>
<td>Prob of emissions, over all paths</td>
</tr>
<tr>
<td>Decoding
3. Viterbi decoding</td>
<td>$\pi^* = \arg\max_\pi P(x, \pi)$</td>
<td>$\pi^\wedge = {\pi_i</td>
</tr>
<tr>
<td></td>
<td>Most likely path</td>
<td>Path containing the most likely state at any time point.</td>
</tr>
<tr>
<td>Learning
5. Supervised learning, given π</td>
<td>$\Lambda^* = \arg\max_\lambda P(x, \pi</td>
<td>\Lambda)$</td>
</tr>
<tr>
<td></td>
<td>$\Lambda^* = \arg\max_\lambda \max_\pi P(x, \pi</td>
<td>\Lambda)$</td>
</tr>
<tr>
<td></td>
<td>Viterbi training, best path</td>
<td></td>
</tr>
</tbody>
</table>
Examples of HMMs for genome annotation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Topology / Transitions</td>
<td>2 states, different nucleotide composition</td>
<td>2 states, different conservation levels</td>
<td>2 states, different trinucleotide composition</td>
<td>2 states, different evolutionary signatures</td>
<td>~20 states, different composition/conservation, specific structure</td>
<td>40 states, different chromatin mark combination</td>
</tr>
<tr>
<td>Hidden States / Annotation</td>
<td>GC-rich / AT-rich</td>
<td>Conserved / non-conserved</td>
<td>Coding exon / non-coding (intron or intergenic)</td>
<td>Coding exon / non-coding (intron or intergenic)</td>
<td>First/last/middle coding exon, UTRs, intron 1/2/3, intergenic, (+/- strand)</td>
<td>Enhancer / promoter / transcribed / repressed / repetitive</td>
</tr>
<tr>
<td>Emissions / Observations</td>
<td>Nucleotides</td>
<td>Level of conservation</td>
<td>Triplets of nucleotides</td>
<td>64x64 matrix of codon substitution frequencies</td>
<td>Codons, nucleotides, splice sites, start/stop codons</td>
<td>Vector of chromatin mark frequencies</td>
</tr>
</tbody>
</table>
What have we learned?

- **Modeling sequential data**
 - Recognize a *type* of sequence, genomic, oral, verbal, visual, etc…

- **Definitions**
 - Markov Chains
 - Hidden Markov Models (HMMs)

- **Examples of HMMs**
 - Recognizing GC-rich regions, preferentially-conserved elements, coding exons, protein-coding gene structures, chromatin states

- **Our first computations**
 - Running the model: know model \rightarrow generate sequence of a ‘type’
 - Evaluation: know model, emissions, states \rightarrow p?
 - Viterbi: know model, emissions \rightarrow find optimal path
 - Forward: know model, emissions \rightarrow total p over all paths

- **Next time:**
 - Posterior decoding
 - Supervised learning
 - Unsupervised learning: Baum-Welch, Viterbi training