Z Algorithm - Linear Time Exact String Matching

Thursday, September 14, 2017 2:45 PM

Looking for a pattern \(P \) in text \(T \):
- \(P \rightarrow \) length \(m \)
- \(T \rightarrow \) length \(n \)

\[\text{Z ALGORITHM: } O(m+n) \]

- Compute \(Z \)-array
 from string \(S \) of length \(n \)

\(Z[i] \) holds the length of the longest substring of string starting from \(S[i] \) which is also a prefix of \(S \)

\[\begin{array}{ccccc}
 0 & 1 & 2 & 3 & 4 & 5 \\
 S & a & a & b & c & a & a \\
 ~ & 1 & 0 & 0 & 2 & 1 \\
\end{array} \]

Substrings of \(aabca \)
- \(\{a, ab, ..., aabca\} \)
- Only \(a \) is a prefix of \(aabca \)

- Using \(Z \)-array for pattern finding

1. Concatenate \(S = P \$ T \). Thus, any prefix of \(S \) with length \(m \) must be exactly \(P \).

 The special character \(\$ \) ensures that you won’t find any match longer than \(m \) (because \(\$ \) never occurs in \(P \) or \(T \))

\[\begin{array}{l}
 \text{eg.}\quad P = a a b \\
 \text{Try:}\quad P = a a b \\
 T = a a b a c a a b \\
 \text{solution on bottom of page} \\
\end{array} \]

\[S = a a b \$ a a b a c a a b \\
Z = ~ 1 0 0 \ 3 \ 2 \ 0 \ 1 0 3 \ 1 0 \]

Given the \(Z \)-array, we can find occurrences in \(O(n) \) time - just search

\[Z [m : n+m-1] \text{ for the value } 'm'. \]

But! How do we construct \(Z \) in linear time, also?

\[\begin{array}{cccccccccccccccc}
 1 & 2 & 0 & 1 & 3 & 0 & 0 & 1 & \sim = Z \\
 a & a & b & a & b & \$ & a & b & a & b & a & b & S \\
\end{array} \]
Finding Z Array in Linear Time

Thursday, September 14, 2017 3:19 PM

Naively: Nested loops. Check every position \(\times \) operation) then expand (\(\approx n \) operations) to find longest substring which is also a prefix

\[= \Theta(n^2) \]

Instead:

Maintain an interval \([l, r]\) which is the longest interval such that \(S[l..r] \) is also a prefix, aka it is a prefix substring

1. If \(i > R \), no prefix substring starts before \(i \) or ends after \(i \).
 Make a new interval \([l, r]\)

2. If \(i < R \), we already have some of the data for the length of the prefix substring starting at \(i \).

\[Z \]

\[S \]

\(i \) is in a previously discovered substring which starts at \(i-L \)

\(\text{Either } Z[i-L] < R-i+1 \implies Z[i] = Z[i-L] \)

\(\text{or } Z[i-L] \geq R-i+1 \implies \text{There’s a longer prefix substring starting at } i \)

Recompute \([l, r]\) & determine \(Z[i] = R-L+1 \)

Check out www.utdallas.edu/~besp/demo/John2010/z-algorithm.htm

Why is this linear? Intuition:

\(R \) always moves forward \(\rightarrow O(n) \) increments comparing one character per increment

\(i \) always moves forward, doing constant time work each step when looking at previous \(Z \) values. If it has to modify \(R \), we can consider that the work of the \(R \) variable – that work does not have to be repeated for each \(i \)

\[L + O(n) + O(n) = O(n) \]