Today: Zero-knowledge interactive proofs

[Goldwasser-Micali-Rackoff 85]

So far:
- One time pad
- OWF + hard core bits
 - Blum-Micali construction from one-way permutations
 - GGM construction
 - PRF
 - HW
 - Semantic secure encryption

Today: Magic of zero-knowledge proofs

What is a proof? A proof for a statement \(x \in L \) consists of a sequence of symbols \(w \) and a polynomial time verifier \(V \) s.t. \(V(x, w) = 1 \), and if \(x \not\in L \) then \(\forall w \ V(x, w) = 0 \).

Proofs are fundamental objects in theory of computation, and is formalized by the complexity class \(\text{NP} \), which consist of all statements that have poly-size proofs:

Def: The complexity class \(\text{NP} \) consists of all languages \(L \) s.t.
\exists \text{const } c \in \mathbb{N} \ \exists \text{Turing machine } V \text{ st. } \forall x \in \{0, 1\}^n

- If \(x \in L \) then \(\exists w \in \{0, 1\}^n \) s.t. \(V(x, w) = 1 \) after running in time at most \(n^c \) (\(n = |x| \))
- If \(x \notin L \) then \(\forall w \in \{0, 1\}^n \) \(V(x, w) = 0 \).

Goal: Construct proofs \(\omega \) that reveal no information.

Impossible! \(\omega \) itself is information; i.e., before receiving \(\omega \), \(V \) could not convince anyone that \(x \in L \) but with \(\omega \) he can. So he learned something:

How to convince that \(x \in L \).

Solution: Change the model!

Interactive Proofs

Allow proofs to be interactive, i.e., the prover receives queries from the verifier and replies to them:

\[
P \xleftarrow{g_1} V \\
\xrightarrow{a_1} \\
\vdots
\]

\[
P \xleftarrow{g_2} \\
\xrightarrow{a_2} \\
\vdots
\]
Importantly: Verifier is allowed to be probabilistic (without adding randomness interactive proofs are the same as non-interactive ones since the prover can compute the verifier's queries on his own).

We allow a probability of error: There is a negligible probability of accepting false statements.

\textbf{Def}: An interactive proof system \((P,V)\) for a language \(L\) consists of interactive parties (Turing machines): \(P\) (the prover) and \(V\) (the verifier). The verifier is restricted to be PPT (no restrictions on \(P\)), and the following properties hold:

- **Completeness**: \(\forall x \in L \quad \Pr[P^* | (P,V)(x) = 1] = 1\)

 \(V\) accepts

- **Soundness**: \(\forall x \notin L \quad \Pr[P^* | (P,V)(x) = 1] \leq \frac{1}{2}\)

 possibly cheating

\textbf{Note}: Soundness can be made arbitrarily low by repetition.

\(\text{IP} = \text{all languages that have an interactive proof}\)
Clearly NPCIP.

It turns out that IP is much more powerful:

Thm [Lund-Fortnow-Karloff-Nisan'90, Shamir'90]:

$$\text{IP} = \text{PSPACE}.$$

Today: Interactive proofs are useful for zero-knowledge (ZK).

Intuitively, an interactive proof is ZK if the verifier did not learn anything from the proof, except the validity of the statement.

Def. Given an interactive proof $\langle P, V \rangle$ for L, for any input $x \in L$ we denote by $\text{View}_{P,V}(x)$ the random variable describing the view of V after interacting with P on input x (i.e. $\text{View}_{P,V}(x)$ consists of the transcript & V's coin tosses, and input x).

More generally, V^* (possibly cheating verifier) $V^* \neq x \in L$ we denote by $\text{View}_{P,V^*}(x)$ the random variable describing the view of V^* after interacting with P on input x.

Loosely speaking a proof system $\langle P, V \rangle$ for L is ZK
If \(\exists x \in L \) the verifier could generate (simulate) this view on her own, without interacting with \(P \), and therefore did not learn anything from the interaction.

There are many flavors of ZK.

Def: An interactive proof \((P,V)\) for \(L \) is said to be

- **perfect**
- **honest-verifier ZK** if \(\exists \) PPT alg \(S \) s.t. \(\forall x \in L \):
 - statistical
 - computational

\[
\text{view}_{(P,V)}(x) \equiv S(x) \uparrow
\]

- identical
- statistically close
- computationally indistinguishable

Def: An interactive proof \((P,V)\) for \(L \) is said to be

- **perfect**
- **ZK** if \(\forall \) PPT (non-uniform) \(V^* \) \(\exists \) PPT (non-uniform) alg \(S \) s.t. \(\forall x \in \{0,1\}^n \) \(L \)
 - \(\forall z \in \{0,1\}^{\text{poly}(n)} \)

\[
\text{view}_{(P,V)}(x,z) \equiv S(x,z) \uparrow
\]

- identical
- statistically close
- comp. indist.
Example: Graph Isomorphism

\[L = \{ (G_1, G_2) : G_1 \cong G_2 \} \]

\[\exists \text{ bijection } \pi : V(G_1) \rightarrow V(G_2) \]

\[\text{ such that } (u, v) \in E(G_1) \text{ iff } (\pi(u), \pi(v)) \in E(G_2) \]

Deciding if two graphs are isomorphic is considered to be a hard problem.

A classical proof: \(\pi \) (this is a witness for \((G_1, G_2) \in L\)).

ZK proof

\[P \quad (G_1, G_2) \in L \quad \forall \]

Sample a random graph \(H \) isomorphic to both \(G_1 \) & \(G_2 \)

\[H = \pi^*(G_1) \quad \overset{H}{\longrightarrow} \]

random bijection

\[\overset{b}{\longleftrightarrow} \quad b \leq 2013 \]

If \(b = 0 \) \(\pi'' = \pi^* \quad \overset{\pi''}{\longrightarrow} \)

If \(b = 1 \) \(\pi'' = \pi^* \pi^{-1} \)

Check that \(\pi'' \)

is a witness for homomorphism of \(H \) & \(G_b \)
It is easy to see that this is an interactive proof system for L (i.e., satisfies completeness & soundness).

Perfect ZK: $S(G_1, G_2, z)$

- Choose at random $b^* \in \{0, 1\}$ & a random bijection π^*. Let $H = \pi^*(G_{b^*})$
- Compute $b = V((G_1, G_2, z, H))$
- If $b = b^*$ output (H, b^*, π^*)
- Else try again

Try at most \mathcal{N} (input length) times.
- If all fail output \bot.

Claim: $\forall (G_1, G_2) \in L: S(G_1, G_2, z) \equiv \text{View}_{(p, v^*)} (G_1, G_2, z)$ $2^{-\mathcal{N}}$-close

Pf: Note that if $S(G_1, G_2, z) \neq \bot$ then the dist. of $S(G_1, G_2, z)$ is identical to $\text{View}_{(p, v^*)} (G_1, G_2, z)$

Moreover, $\Pr[S(G_1, G_2, z) = \bot] = 2^{-\mathcal{N}}$

Remark: Can make it perfect ZK if S is expected poly-time.
Remark 2: S is a universal simulator, uses V in a black-box.

Remark 3: Soundness is only $1/2$. Can reduce soundness to 2^{-n} via n repetitions.

\mathbb{Z}_k is preserved under sequential repetition (but not under parallel repetition).

The reason it is preserved under sequential repetition is the auxiliary input.

Example: Quadratic residues mod N (QR_N)

$$L = \{(y, N) : \exists x \text{ s.t. } y = x^2 \mod N\}$$

Deciding if $(y, N) \in L$ for $N = p \cdot q$ (p, q random large primes) & y random element in \mathbb{Z}_N^* (with Jacobi symbol $+1$) is believed to be hard (assuming Factoring is hard).

The first public key encryption scheme proposed by Goldwasser & Micali (1982) relies on the hardness of QR_N.
A classical proof for \((y, N) \in L: x \text{ s.t. } y = x^2 \mod N\):

ZK proof:
\[P \quad (y, N) \in L \quad V \]

Choose at random \(r \leftarrow \mathbb{Z}_N^* \)
\[\frac{y = r^2 \mod N}{b} \quad b \leftarrow \{0, 1\} \]
\[\frac{r \cdot x^b}{V} \]

Accept iff
\[y^b = (r \cdot x^b)^2 \]

It is easy to see that this is an interactive proof (i.e., satisfies completeness & soundness).

Perfect ZK: \(S((y, N), z) \):

Choose at random \(b^* \leftarrow \{0, 1\} \)
Choose at random \(r \leftarrow \mathbb{Z}_N^* \), and let
\[V = r^2 y^{b^*} \mod N \]

Compute \(b = V^*((y, N), z, V) \).
If \(b = b^* \) output \((V, b^*, r)\)
else, try again.

Repeat at most \(n \) times.
As w. graph isomorphism, it is 2^{-n}-statistical ZK or perfect ZK w.r.t. expected PPT simulator.

Next time: Every proof can be converted into a (comp.) ZK interactive proof assuming OWF!