6. A Profusion of Queens

To loop is human, to recurse divine. – Author Unknown.

Having solved the 8-queens problem, we turn our attention to solving the N-queens problem for arbitrary N. That is, we need to place N queens on an \(N \times N \) board such that no pair of queens attack each other.

Let’s now assume that we are not allowed to write nested `for` loops (or other types of loops) that have a degree of nesting more than 2. You might say that this is an artificial constraint, but not only is the deeply nested 8-queens code aesthetically displeasing, but the code is also not general. If you wanted to write a program to solve the N-queens problem for N up to say 20, you would have to write functions to solve 4-queens (with 4 nested loops), 5-queens (with 5 nested loops), all the way to 20-queens (with 20 nested loops!), and invoke the appropriate function depending on the actual value of N when the code is run. What happens if you then want a solution to the 21-queens problem?

We will need to use recursion to solve the general N-queens problem. Recursion occurs when something is defined in terms of itself. The most common application of recursion in programming is where a function being defined is applied within its own definition.

In Python a function can call itself. If a function calls itself, it is called a recursive function. Recursion may also correspond to a function A calling a function B, which in turn calls function A. We’ll focus on the simple case of recursion here, namely a function \(f \) calling \(f \) again.

Recursive Greatest Common Divisor

What exactly happens when a function \(f \) calls itself? Surprisingly, this is not very different from the function \(f \) calling a different function \(g \) from an execution standpoint. Let’s look at a simple case of recursion where we are computing the greatest common divisor (GCD) of a number. We can easily do this iteratively using the Euclidean Algorithm as shown below.

```python
1. def iGcd(m, n):
2.     while n > 0:
3.         m, n = n, m % n
4.     return m
```
Here's recursive code for GCD with equivalent functionality:

1. `def rGcd(m, n):
2. if m % n == 0:
3. return n
4. else:
5. gcd = rGcd(n, m % n)
6. return gcd

We make two key observations:

1. `rGcd` does not call itself in every case – there is a base case where if `m % n == 0`, then `rGcd` returns `n` and does not call itself. This corresponds to Lines 2 and 3 above.
2. The other observation is that the arguments to the `rGcd` invocation inside of `rGcd` – the callee `rGcd` on Line 5 – are different from the arguments of the caller `rGcd`. Over two recursive calls, i.e., `rGcd` calling `rGcd` calling `rGcd`, the arguments of the third call will be smaller than the arguments of the first.

Together these two observations ensure that `rGcd` terminates. If a function calls itself with exactly the same argument(s) then assuming there is no global state being modified and tested, we will end up with an infinite loop, i.e., a non-terminating program. We will also create a non-terminating program if we do not have a base case with no recursive call.

The execution of `rGcd(2002, 1344)` is shown below illustrating the called procedures.

```
   rGcd(2002, 1344) (Line 5 call)
   → rGcd(1344, 658) (Line 5 call)
       → rGcd(658, 28) (Line 5 call)
           → rGcd(28, 14) (returns on Line 3)
   rGcd(658, 28) (returns on Line 6)
   rGcd(1344, 658) (returns on Line 6)
   rGcd(2002, 1344) (returns on Line 6)
```

The indentation reflects the recursive calls.

Can you write code for a recursive algorithm that solves N-queens?

Exercises

Exercise 1: Modify the `nQueens` code to pretty print an actual two-dimensional board as shown below with the solution obtained by `nQueens(20)`. A . signifies an empty square on the board, and a Q signifies a queen. There is a space between each pair of .’s.
Puzzle Exercise 2: Modify the nQueens code so it looks for solutions with a queen already placed in a list of locations and prints one if it exists. You can use a 1-D list location that has non-negative entries for certain columns that correspond to fixed queen positions. For example, location = [-1, -1, 4, -1, -1, -1, 0, -1, -1, 5] has three queens placed in the 3rd, 8th and 10th columns for a 10 × 10 board. Your code should produce the solution shown below that is consistent with the specified locations:

```
Q . . . . . . . . . .
. . Q . . . . . . . .
. Q . . . . . . . . .
. . . . . . . . . . Q
. . . . . . . . . . Q
. . . . . . . . . . Q
. . . . . . . . . . Q
. . . . . . . . . . Q
. . . . . . . . . . Q
Q . . . . . . . . . .
```

Exercise 3: A palindrome is a string that that reads the same front to back and back to front. For example, kayak and racecar are palindromes. Write a recursive function using list splicing that determines whether an argument string is a palindrome or not. Your procedure should ignore the case of letters, i.e., it should report that 'kayak' is a palindrome.