String algorithms I & II

Prof. Manolis Kellis

Lecture 11

The exact matching problem

- **Inputs:**
 - a string \(P \), called the pattern
 - a longer string \(T \), called the text
- **Output:**
 - Find all occurrences, if any, of pattern \(P \) in text \(T \)
- **Example**

\[
P = a b a
\]

\[
T = b a a b a c a b a b a d
\]

String algorithms

- **Today:** String matching I
 - The exact string matching problem
 - Naïve algorithm
 - Preprocessing the query:
 - Fundamental preprocessing
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore algorithm
 - Z algorithm algorithm
 - Semi-numerical string matching
 - Rabin-Karp algorithm
- **Wednesday:** String matching II
 - Finite state machines
 - Suffix-trees
 - Inexact matching

The naïve string-matching algorithm

1. \(n \leftarrow \text{length}[T] \)
2. \(m \leftarrow \text{length}[P] \)
3. for shift \(0 \text{ to } n \)
 - if \(P[1..m] == T[\text{shift+1}..\text{shift+m}] \)
 - then print “Pattern occurs with shift” shift
4. Where the test operation in line 4:
 - Tests each position in turn
 - If match, continue testing
 - else: stop
5. **Running time** ~ number of comparisons
 - number of shifts (with one comparison each)
 - + number of successful character comparisons

Basic string definitions

- **A string** \(S \)
 - Ordered list of characters
 - Written contiguously from left to write
- **A substring** \(S[i..j] \)
 - all contiguous characters from \(i \) to \(j \)
 - Example: \(S[3..7] = abaxa \)
- **A prefix** is a substring starting at 1
- **A suffix** is a substring ending at \(|S| \)
- \(|S| \) denotes the number of characters in string \(S \)

Comparisons made with naïve algorithm

- **Worst case running time:**
 - Test every position
 - \(P=aaaa, T=aaaaaaaaaaa \)
- **Best case running time:**
 - Test only first position
 - \(P=bbbb, T=aaaaaaaaaa \)

Can we do better?
Key insight: make bigger shifts!

• If all characters in the pattern are the same:

Information gathered at every comparison

Knowledge of the internal structure of P

Number of comparisons: $O(n)$

Key insight: make bigger shifts!

• If all characters in the pattern are different:

Number of comparisons:
- At most n matching comparisons
- At most n non-matching comparisons

\Rightarrow Number of comparisons: $O(n)$

Key insight: make bigger shifts!

• Special case:
 - If all characters in the pattern are the same: $O(n)$
 - If all characters in the pattern are different: $O(n)$

• General case:
 - Learn internal redundancy structure of the pattern
 - Pattern pre-processing step

• Methods:
 - Fundamental pre-processing
 - Knuth-Morris-Pratt
 - Finite State Machine

Fundamental pre-processing

• Learning the redundancy structure of a string S

$S = a b c d e f g h i j k$ $Z = z_0 z_1 z_2 z_3 z_4 z_5 z_6 z_7 z_8 z_9 z_{10}$

$Z_{\text{box}} = 1 2 3 4 5 6 7 8 9 10 11$
$r = a b c d e f g h i j k$
$l = a b c d e f g h i j k$

$Z_1 Z_2 Z_3 \ldots Z_{k-1} Z_k$

• Case 1: k is outside a Z-box: simply compute Z_k

$S = a b c d e f g h i j k$ $Z_k = z_{11}$ $Z_{k'}$

Can we compute Z, r, l in linear time $O(|S|)$?

Computing Z_k given $Z_1 \ldots Z_{k-1}$

• Case 1: k is outside a Z-box: simply compute Z_k

$S = a b c d e f g h i j k$ $Z_k = z_{11}$ $Z_{k'}$

\Rightarrow Case 2a: $Z_k < r-k$
\Rightarrow Case 2b: $Z_k \geq r-k$
Computing Z_k given $Z_1 \ldots Z_{k-1}$

Case 2a: $Z_k < r-k$

Case 2b: $Z_k \geq r-k$

Correctness of Z computation

Running time of Z computation

Putting it all together

FUNDAMENTAL-PREPROCESSING(S):

$$Z_{2,1,r} = \text{explicitly compare } S[1..] \text{ with } S[2..]$$

for k in 2..n:

- if $k > r$: $Z_{k,1,r}$ = explicitly compare $S[1..]$ with $S[k..]$
- if $k < r$:
 - if $Z_k < (r-k)$: $Z_k = Z_k'$
 - else:
 - $Z_k = \text{explicitly compare } S[r+1..] \text{ with } S[(r-k)+1..]$

$$l = k$$
$$r = l + Z_k$$

Back to string matching

- Given the fundamental pre-processing of pattern P
 - Compare pattern P to text T
 - Shift P by larger intervals based on values of Z
- Three algorithms based on these ideas
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore algorithm
 - Z algorithm
Knuth-Morris-Pratt algorithm

- Pre-processing:
 - $S_p(P)$ = length of longest proper suffix of $P[1..i]$ that matches a prefix of P

Knuth-Morris-Pratt running time

- Number of comparisons bounded by characters in T
 - Every comparison starts at text position where last comparison ended
 - Every shift results in at most one extra comparison
 - At most $|T|$ shifts \Rightarrow Running time bounded by $2*|T|$

Boyer-Moore algorithm

- Three fundamental ideas:
 1. Right-to-left comparison
 2. Alphabet-based shift rule
 3. Preprocessing-based shift rule

Results in:
 - Very good algorithm in practice
 - Rule 2 results in large shifts and sub-linear time
 - Rule 3 ensures worst-case linear behavior
 • even in small alphabets, ex: DNA sequences

The Z algorithm

- The Z algorithm
 - Concatenate $P + \$ + T$
 - Compute fundamental pre-processing $O(m+n)$
 - Report all starting positions i for which $Z_i = |P|$
Computing the hash scores in linear time

- Use previous score to compute the next one

\[14152 = (31415-3*10000)*10+2 \mod 13 \]
\[= (7-3*3)*10+2 \mod 13 \]
\[= 8 \mod 13 \]

- Other semi-numerical methods
 - Fast Fourier Transform
 - Shift-And method

String algorithms

- Today: String matching I
 - The exact string matching problem
 - Naïve algorithm
 - Preprocessing the query:
 - Fundamental pre-processing
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore algorithm
 - Z algorithm algorithm
 - Semi-numerical string matching
 - Rabin-Karp algorithm
- Wednesday: String matching II
 - Suffix-trees
 - Inexact matching
- Friday: Finite State Machines
 - String matching automata