String algorithms II
Prof. Manolis Kellis

Lecture 12

String algorithms

• Last time: Exact string matching
 – Naïve algorithm
 – Fundamental pre-processing
 • Knuth-Morris-Pratt / Boyer-Moore / Z-algorithm
 – Semi-numerical string matching
 • Rabin-Karp algorithm
• Today: String matching II
 – Suffix-trees
 – Linear time construction
 – Applications
• Recitation:
 – More on Suffix Trees
 – Finite State Machines
 – Regular Expression Matching

Where have we gotten so far?

• Last time
 – Fundamental preprocessing in linear time
 – Searching for pattern p in linear time: O(Text)
• Today’s challenge: Can we do better?
 – Searching for any pattern p in linear time O(pattern)
 – After pre-processing the text once

More involved pre-processing step

• Fundamental pre-processing only searched for:
 – Common prefix / suffix at any position
 – Redundancy with beginning/end of string
• Suffix trees
 – Redundancy across all substrings
 • starting at every position
 • over the remainder of the list
• Example:
 – Suffix tree of xabxac

Suffix tree definition

• Definition: Suffix tree T for string S (of length n)
 – Rooted, directed tree T, n leaves, numbered 1..n
 – Path to leaf i spells out the suffix S[i..], by concatenating edge labels
 – Common prefixes share common paths, diverge to form internal nodes
 – Effectively exhibit common prefixes of every suffix
 – Explores full substring redundancy structure of S

Exact string matching with suffix trees

• Given the suffix tree for text T
• Search pattern P in O(pattern) time
 – For every character in P, traverse the appropriate path of the tree, reading one character each time
 – If P is not found in a path, P does not occur in T
 – If P is found in its entirety, then all occurrences of P in T are exactly the children of that node
 – Every child corresponds to exactly one occurrence
 – Simply list each of the leaf indices

Suffix Tree Construction

- Naïve algorithm

```
xa

1 x

ab

2 a

xa

3 b

xb

4 a

ac

5 c

6 c
```

- Running time: $O(n^2)$

Rules for suffix tree extension

- Extension rule #1: add a character to the end of an edge label
- Extension rule #2: add a new branch and internal node
- Extension rule #3: do nothing

High-level description

- UKKONEN-ALGORITHM
 - Construct I_1
 - for i in $[1..m-1]$
 - [begin phase $i+1$]
 - for j in $[1..i+1]$
 - [begin extension $j+1$]
 - Find the end of the path labeled $S[j..i]$ in current tree (call it β)
 - if [rule 1]: β ends in a leaf: [rule #1]
 - then add $S(i+1)$ to that edge label
 - if [rule2]: β ends in middle of edge
 - then add an internal node and new branch
 - if [rule3]: $S(i+1)$ already exists
 - then do nothing
 - [end extension $j+1$]
 - [end phase $i+1$]
 - [end for i]

- Running time: $O(n^3)$

Can we do better?

Speedup the search for β: Use suffix links

- Ukkonen’s algorithm (with suffix links)

```
xa

1 x

ab

2 a

xa

3 b

xb

4 a

ac

5 c

6 c
```

- Running time: $O(n^2)$?

Ensure we only back up by one node at each iteration

- Not yet, but almost there!

Link between internal nodes. From $c' + \alpha \rightarrow \alpha$

- How does this help?
 - We ensure we only backtrack by 1 node, before traversing $(x,s(v))$
 - Node-depth decreases by another 1 node, during traversal
 - since $c' \alpha$ is a substring of α
 - all branches are identical
 - Thus, over an entire phase, at most $O(n)$ increases
 - max node-depth is $O(n)$, bounded by the number of characters
 - at most 2^n decrements \rightarrow at most 3^n increments

- Must ensure constant traversal time per node!
Constant-time node traversal

- Fixed alphabet allows constant-time lookup for edge
 - Translate character to index
- Keeping track of label length L on each edge
 - Jump to next node, and skip over L characters in γ

Summary: Linear time for each phase

- O(n) node traversals over the entire phase
 - No more than 2n decreases in node-depth
 - By using v → s(v) links, avoid backtracking to root
 - Longest depth is n (length of string)
- O(n) node traversals per phase
 - Constant time per node traversal
 - Fixed alphabet
 - Indexing of branches to follow at every node
 - Known length to traverse for every edge
 - No need for explicit character comparisons
- O(n) time over the entire phase
 - O(n^2) time over the entire construction

Can we do better?

Three more ideas

(a) Edge representation
 - Use (start,end) indexing to S → space reduction

(b) Once a skip, always a skip: rule #3 terminates entire phase
 - If prefix is already included → entire extension already included
 - When rule #3 applies once, it applies for entire phase

(c) Once a leaf, always a leaf: rule #1 work done centrally
 - Special symbol for end of S → centralized work
 - Series of extensions in start of each phase → constant work

Reducing space usage: Edge-label compression

- (1,3) (2,3)
- (4,6) (10,12)

Constant space for every node. O(n) space for entire tree

Reducing the work for rule #3

- Extension rule #1: add a character to the end of an edge label
- Extension rule #2: add a new branch and internal node
- Extension rule #3: do nothing (path already exists)

If rule #3 applies to extension j, then it applies to all j' > j,
 since the entire suffix S[j..i] is already included in the tree
 → Rule #3 terminates an entire phase

Example:

Phase j=5

<table>
<thead>
<tr>
<th>j</th>
<th>Phase</th>
<th>Rule #3 applies</th>
<th>do work</th>
<th>if 'a' already exists:</th>
<th>'a' already exists</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>do work</td>
<td>'b' already exists</td>
<td>'b' already exists</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>do work</td>
<td>'b' already exists</td>
<td>'b' already exists</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>3</td>
<td>do work</td>
<td>'b' already exists</td>
<td>'b' already exists</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>3</td>
<td>rule #3 applies</td>
<td>b a x a x a</td>
<td>b a x a x a</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>3</td>
<td>skip</td>
<td>b a x a x a</td>
<td>b a x a x a</td>
</tr>
</tbody>
</table>

Reducing the work for rule #1

- Extension rule #1: add a character to the end of an edge label

- Once a leaf always a leaf:
 - If rule #1 applies for character j at some phase, it applies for j in all subsequent phases
 - Initial stretch of rule #1 applications at beginning of each phase
 - Centralize this work
 - Create "current end" variable e, updated centrally at start of each phase, extending all leaves
 - Start explicit work after this initial stretch (at "j" where rule #3 first applied in previous phase)

- Implicit work
 - Implicit work: a, a, a, a (already includes a)
 - Implicit work: a, a, a, a (already includes a)
 - Implicit work: a, a, a, a (already includes a)
 - Implicit work: a, a, a, a (already includes a)
 - Start explicit work here: x a x a (already includes a)
 - End explicit work here: x a x a (already includes a)

- Skipped (after rule #3) implicit extensions

Can we do better?
Amortized constant cost per phase!

Phase 1
- 1 2 3 4 5 6 7 8
- Phase 1 completed

Phase 2
- 9 10 11
- Centralized rule #1 extension
- Phase 2 completed

Phase 3
- 11 12 13 14 15 16
- Centralized rule #1 extension
- Phase 3 completed

Phase 4
- 16 17
- Centralized rule #1 extension

- Summary: three smart ideas
 - (a) Constant space per edge (start,end) variables
 - (b) Once a skip, always a skip
 - (c) Once a leaf, always a leaf

⇒ Constant amortized cost per phase
⇒ Linear cost for entire algorithm!

Putting it all together

- **UKKONEN-ALGORITHM**
 - Construct I_1
 - for i in $[1..m-1]$
 - Increment end variable e [centralized rule #1] (a)
 - for j in $[i+1..m]$
 - [begin explicit work where last rule #3 was applied (c)]
 - Use link $s(v)\rightarrow s(v)$ to find $S[j..i]$ in current tree (call it β) (suffix-links)
 - if [rule1]: β ends on a leaf
 - then do nothing [rule #1 is now centralized] (a)
 - if [rule2]: β ends in middle of edge
 - then add an internal node and new branch
 - if [rule3]: $S(i+1)$ already exists
 - then end entire phase, set j^* (b)

Applications of suffix trees

- Exact string matching
- Dictionary lookup for one word
- Search of multiple strings for one pattern
- Longest common substring problem
- Common substrings of more than two strings
- Longest common extension
- Inexact string matching