Lecture 14 - **Digital Circuits: Inverter Basics** - Outline

- **Announcements**
 - Handout - Lecture Foils; two supplemental readings on Stellar
 - The MOSFET alpha factor - use definition in lecture, not text

- **Review** - Adding refinements to large signal models
 - **Charge stores**: depletion regions, excess carriers, gate charge
 - **Active-length modulation**: the Early effect
 - **Extrinsic parasitics**: Lead resistances, capacitances, and inductances

- **Digital building blocks - inverters**
 - A generic inverter
 - MOS inverter options

- **Digital inverter performance metrics**
 - **Transfer characteristic**: logic levels and noise margins
 - **Power dissipation**
 - **Switching speed**
 - **Fan-out, fan-in**
 - **Manufacturability**

- **Comparing the MOS options**
 - And the winner is….
Charge stores in devices: we must add them to our device models

Parallel plate capacitor

\[q_{A,PP} = A \frac{\epsilon}{d} v_{AB} \]

\[C_{pp}(V_{AB}) = \left. \frac{\partial q_{A,PP}}{\partial V_{AB}} \right|_{V_{AB}=V_{AB}} = A \frac{\epsilon}{d} \]

Depletion region charge store

\[q_{A,DP}(V_{AB}) = -A \sqrt{2q\epsilon_{Si} \left[\phi_b - v_{AB} \right]} \frac{N_{Ap}N_{Dn}}{N_{Ap} + N_{Dn}} \]

\[C_{dp}(V_{AB}) = A \sqrt{\frac{q\epsilon_{Si}}{2[\phi_b - V_{AB}]} \frac{N_{Ap}N_{Dn}}{N_{Ap} + N_{Dn}}} = \frac{A \epsilon_{Si}}{w(V_{AB})} \]

QNR region diffusion charge store

\[q_{AB,DF}(V_{AB}) \approx A q n_i^2 \frac{D_h}{N_{Dn}w_{n,eff}} \left[e^{qV_{AB}/kT} - 1 \right] \]

\[C_{df}(V_{AB}) \approx \frac{w_{n,eff}^2}{2D_h} \frac{q I_D(V_{AB})}{kT} \]

Note: Approximate because we are only accounting for the charge store on the lightly doped side.
Adding charge stores to the large signal models:

p-n diode:

- **q_{AB}**: Excess carriers on p-side plus excess carriers on n-side plus junction depletion charge.

BJT: npn (in F.A.R.)

- **q_{BE}**: Excess carriers in base plus E-B junction depletion charge
- **q_{BC}**: C-B junction depletion charge

MOSFET: n-channel

- **q_{G}**: Gate charge; a function of \(v_{GS} \), \(v_{DS} \), and \(v_{BS} \).
- **q_{DB}**: D-B junction depletion charge
- **q_{SB}**: S-B junction depletion charge
The Early Effect: (exaggerated for impact)

BJT: npn

\[-\frac{1}{\lambda} = -V_A\]

MOSFET: n-channel

\[-\frac{1}{\lambda} = -V_A\]
Output Characteristics

BJT: npn

\[i_C \approx \beta_F (1 + \lambda V_{CE}) i_B \]

MOSFET: n-channel

\[i_D \approx K [v_{GS} - V_T(v_{BS}) - v_{DS}/2] v_{DS} \]

\[i_D \approx K [v_{GS} - V_T(v_{BS})]^2 [1 + \lambda (v_{DS} - V_{DSat})/2] \]
Large signal models: when will we use them?

Digital circuit analysis/design:
This requires use of the entire circuit, and will be the topic of this and the next lecture (Lecs. 14 and 15).

Bias point analysis/design:
This uses the FAR models (Lec. 17ff).

![BJT Diagram](image)

![MOSFET Diagram](image)
Large Signal Characteristics of MOSFETs and BJTs:
Models used for initial hand calculations of transfer characteristics

MOSFET

\[i_D = \beta_F i_B \]

\[v_D = 0 \]

\[v_B = 0 \]

\[i_G \approx 0 \]

\[v_{GS}, v_{DS}, v_{BS} \]

\[i_D(v_{GS}, v_{DS}, v_{BS}) \]

\[v_{DS} \geq 0 \]

\[v_{BS} \leq 0 \]

\[i_B \approx 0 \]

\[i_G \approx 0 \]

\[i_D \approx 0 \]

\[i_D \approx K(v_{GS} - V_T - v_{DS}/2)v_{DS} \]

BJT

\[\beta_F i_B \]

\[v_{BE}, v_{BE,ON} \]

\[v_{BE} \]

\[v_{CE, sat} \approx 0.2 V \]

\[v_{CE} \]

\[i_C \approx \beta_F i_B \]

\[i_C \approx 0 \]

\[\alpha = 1 \]

\[v_A = \infty \]
MOSFET Circuit symbols: an aside about different symbols used for MOSFETS in schematic circuit drawings

n-channel

- Linear schematics
- Enhancement mode
- Digital schematics
- Depletion mode

p-channel

(usual circuit orientation)

- Linear schematics
- Enhancement mode
- Digital schematics
- Depletion mode
• Building Blocks for Digital Circuits: **inverters**

A basic inverter

Switch: on or off

Logic gates

NOR:

<table>
<thead>
<tr>
<th>v_A</th>
<th>v_B</th>
<th>v_{OUT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

NAND:

<table>
<thead>
<tr>
<th>v_A</th>
<th>v_B</th>
<th>v_{OUT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Performance metrics

- Transfer characteristic
- Logic levels
- Noise margins
- Power dissipation
- Switching speed
- Fan-in/Fan-out
- Manufacturability

Memory cell

Flip-flop

Clif Fonstad, 4/4/06
Transfer characteristic

Node equation: \(i_{PD} = i_{PU} \)

\[
i_{PD} = \begin{cases}
0 & \text{when } v_{IN} < V_{T,PD} \\
K_{PD}(v_{IN} - V_{T,PD})^2 / 2 & \text{when } 0 < [v_{IN} - V_{T,PD}] < v_{OUT} \\
K_{PD}(v_{IN} - V_{T,PD} - v_{OUT}/2)v_{OUT} & \text{when } 0 < v_{OUT} < [v_{IN} - V_{T,PD}]
\end{cases}
\]

\(i_{PU} \): Depends on the specific pull-up device used.

Switching times

Charging cycle: \(i_{Charge} = i_{PU} \)

Discharging cycle: \(i_{Discharge} = i_{PD} - i_{PU} \)

Power

\[
P_{Total} = P_{Static} + P_{Dynamic}
\]

Static:

\[
P_{Static} = \frac{1}{2} i_{PU, on} V_{DD}
\]

Dynamic:

\[
P_{Dynamic} = C_L V_{DD}^2 \cdot f
\]
MOS inverters: 5 pull-up choices

Generic inverter

- n-channel, e-mode pull-up
 - V_{DD} on gate
 - V_{GG} on gate

- Resistor pull-up

- Active p-channel pull-up (CMOS)

Clif Fonstad, 4/4/06
Switching transients

General approach:
The load, \(C_L \), is a non-linear charge store, but for MOSFETs it is fairly linear and it is useful to think linear:

\[
dv_{\text{out}}/dt \approx i_{\text{CL}}/C_L
\]

Bigger current → faster \(v_{\text{OUT}} \) change

\(\Rightarrow \) **CHARGING \(C_L \):**
The charging current for the various MOSFET pull-up options

Charging cycle:
\[
i_{\text{Charge}} = i_{\text{PU}}
\]

Discharging cycle:
\[
i_{\text{Discharge}} = i_{\text{PD}} - i_{\text{PU}}
\]
Switching transients, cont.

⇒ DISCHARGING C_L:
The discharging current for the various pull-up options

Discharging cycle:

\[i_{\text{Discharge}} = i_{PD} - i_{PU} \]

- The discharge current ($i_{\text{Discharge}}$) is the difference between the upper curve (i_{PD}) and the appropriate lower curve (i_{PU}).

Which pull-up is best? To see we can look at each in turn and then compare them.
Switching transients, cont.

Charging and discharging:
Linear resistor pull-up

\[\text{i}_{\text{PU}} = \text{i}_{\text{Charge}} \]

\[\text{i}_{\text{PD}} = \text{i}_{\text{Discharge}} + \text{i}_{\text{PU}} \]

Simple
Least costly with discrete components but integrated resistors consume lots of space.

\[\tau_{\text{Charge}} >> \tau_{\text{Discharge}} \]
Switching transients, cont.

Charging and discharging:
Saturated E-mode pull-up

\[i_{\text{PU}} = i_{\text{Charge}} \]

\[i_{\text{PD}} = i_{\text{Discharge}} + i_{\text{PU}} \]

No added cost in adding more MOSFETs
No added wiring
Slower than linear resistors

\[\tau_{\text{Charge}} \gg \tau_{\text{Discharge}} \]
Switching transients, cont.

Charging and discharging: Linear E-mode pull-up

\[i_{PU} = i_{Charge} \]

\[i_{PD} = i_{Discharge} + i_{PU} \]

Still compact
Need to wire VGG to each gate
Need second supply
Not faster than linear resistor

\[\tau_{Charge} >> \tau_{Discharge} \]
Switching transients, cont.

Charging and discharging:
D-mode pull-up ("nMOS")

Charging and discharging:
D-mode pull-up ("nMOS")

Compact
Symmetrical charge/discharge
Fastest possible
Must make E- and D-mode on safe wafer

\[i_{PU} = i_{\text{Charge}} \]

\[i_{PD} = i_{\text{Discharge}} + i_{PU} \]

\[\tau_{\text{Charge}} \approx \tau_{\text{Discharge}} \]
Switching transients, cont.

Charging and discharging:
Active complementary pull-up ("CMOS")

\[I_{PD} = I_{Discharge} + I_{PU} \]

Symmetrical charge/discharge
Almost as fast, or even faster than, n-MOS
No static power dissipation \((I_{ON} = 0)\)
Must make n- and p-channel on same wafer

\[\tau_{Charge} \approx \tau_{Discharge} \]
Switching transients: summary of charge/discharge currents

- Resistor and E-mode pull-up (\(V_{GG}\) on gate)
- E-mode pull-up (\(V_{DD}\) on gate)
- D-mode pull-up (called "n-MOS")
- CMOS

Clif Fonstad, 4/4/06

- Comparisons made with same pull-down MOSFET, load, \(V_{Hi}\), and \(I_{ON}\).
Digital building blocks - inverters

A generic inverter: Switch = pull-down device, Load = pull-up device
MOS inverter options - Pull-down: n-channel, e-mode (faster than p-channel)
 Pull-up: 1. resistor; 2. n-channel, e-mode w. and w.o. gate bias;
 3. n-channel, d-mode; 4. p-channel, e-mode (CMOS)

Digital inverter performance metrics

Transfer characteristic
 Logic levels: \(V_{HI}, V_{LO} \)
 Noise margins: \(NM_{HI} \) (high), and \(NM_{LO} \) (low)
 Design variables: choice of pull-up device
 pull-up and pull-down thresholds
 device sizes (absolute and relative)

Power dissipation: stand-by power and switching dissipation
Switching speed: capacitive load
 charge and discharge currents critical

Fan-out, fan-in: minimal issue in MOS; more so with BJT logic

Manufacturability: small, fast, low-power, reliable, and cheap

Comparing the MOS options

And the winner is… CMOS