An abstract is a concise summary of the report. The content and structure of the abstract will depend on the content and structure of the report. When you draft an abstract, you may find it to be helpful to write one or two sentences summarizing each section or major subsection of the report. When you put the sentences together, you will have a first draft of the abstract. Revise the abstract as needed to improve the logical flow.

Sample abstract for a feasibility report:

This report analyzes the feasibility of building a temporomandibular joint monitor for users with jaw disorders. The purpose of the monitor is to alarm the user when the jaw is about to spasm, so the user can perform stretches or relaxation exercises to prevent the spasm. Studies show that muscle spasms occur when muscles are loaded rhythmically at high frequencies, such as happens during chewing. Devices have been reported that monitor the tenseness of jaw muscles by measuring electromyographic potentials, and provide biofeedback to help the user relax those muscles. Although the existing devices are shown to be effective, they focus on training the user to relax at all times. Constant relaxation is not practical in some lifestyles, so we will focus on designing a practical device that prevents spasm by monitoring the tenseness of the jaw muscles during chewing and alerting the user when muscle tenseness approaches dangerous levels. Because the materials for measuring electromyographic potentials are readily available in the lab, and because closely-related devices already exist, we conclude that this project is feasible.

Sample abstract for a final report:

People with disorders of the jaw may experience spasms that cause trauma to the tongue or interior of the cheek, especially during chewing. This paper explains the design of a temporomandibular joint monitor, which alarms the user when the jaw is about to spasm, so the user can perform stretches or relaxation exercises to prevent the spasm. The device uses electrodes to acquire electromyographic potentials from the temporomandibular joint. A program analyzes the potentials and the user is alerted by a tone when the jaw muscles are close to spasming. Testing shows that the device accurately signals each spasm, but the user is not able to prevent the spasm upon hearing the alarm. Sensitivity testing suggests that the alarm tone triggers the impending spasm, so future designs should use a more relaxing alarm.